Predicting Breast Cancer in Breast Imaging Reporting and Data System (BI-RADS) Ultrasound Category 4 or 5 Lesions: A Nomogram Combining Radiomics and BI-RADS

双雷达 无线电技术 乳房成像 列线图 置信区间 医学 乳腺癌 乳腺摄影术 接收机工作特性 放射科 恶性肿瘤 癌症 肿瘤科 内科学
作者
Weiquan Luo,Qing-xiu Huang,Xiaowen Huang,Hang-Tong Hu,Fuqiang Zeng,Wei Wang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:9 (1) 被引量:81
标识
DOI:10.1038/s41598-019-48488-4
摘要

Abstract Radiomics reflects the texture and morphological features of tumours by quantitatively analysing the grey values of medical images. We aim to develop a nomogram incorporating radiomics and the Breast Imaging Reporting and Data System (BI-RADS) for predicting breast cancer in BI-RADS ultrasound (US) category 4 or 5 lesions. From January 2017 to August 2018, a total of 315 pathologically proven breast lesions were included. Patients from the study population were divided into a training group (n = 211) and a validation group (n = 104) according to a cut-off date of March 1 st , 2018. Each lesion was assigned a category (4A, 4B, 4C or 5) according to the second edition of the American College of Radiology (ACR) BI-RADS US. A radiomics score was generated from the US image. A nomogram was developed based on the results of multivariate regression analysis from the training group. Discrimination, calibration and clinical usefulness of the nomogram for predicting breast cancer were assessed in the validation group. The radiomics score included 9 selected radiomics features. The radiomics score and BI-RADS category were independently associated with breast malignancy. The nomogram incorporating the radiomics score and BI-RADS category showed better discrimination (area under the receiver operating characteristic curve [AUC]: 0.928; 95% confidence interval [CI]: 0.876, 0.980) between malignant and benign lesions than either the radiomics score ( P = 0.029) or BI-RADS category ( P = 0.011). The nomogram demonstrated good calibration and clinical usefulness. In conclusion, the nomogram combining the radiomics score and BI-RADS category is potentially useful for predicting breast malignancy in BI-RADS US category 4 or 5 lesions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lydia完成签到,获得积分10
刚刚
ddbc发布了新的文献求助10
刚刚
刚刚
幽逸发布了新的文献求助10
2秒前
2秒前
半夏完成签到 ,获得积分10
3秒前
3秒前
4秒前
徐小美发布了新的文献求助30
5秒前
1212发布了新的文献求助10
6秒前
111完成签到,获得积分10
6秒前
ddbc完成签到,获得积分10
7秒前
在雨里思考完成签到,获得积分10
7秒前
8秒前
乐乐应助杨小鸿采纳,获得10
9秒前
9秒前
紧张的谷槐完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
幽逸完成签到,获得积分10
10秒前
Szw666完成签到,获得积分10
15秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
jojo完成签到 ,获得积分10
17秒前
18秒前
lll完成签到,获得积分20
18秒前
VAN发布了新的文献求助10
21秒前
徐小美完成签到,获得积分20
22秒前
传奇3应助lll采纳,获得30
22秒前
老仙翁完成签到,获得积分10
22秒前
lilyz615完成签到,获得积分10
24秒前
25秒前
ding应助听见采纳,获得10
27秒前
27秒前
28秒前
斯文败类应助kuny采纳,获得10
28秒前
77发布了新的文献求助10
29秒前
aniver完成签到 ,获得积分10
30秒前
31秒前
痕丶歆完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978