Predicting Breast Cancer in Breast Imaging Reporting and Data System (BI-RADS) Ultrasound Category 4 or 5 Lesions: A Nomogram Combining Radiomics and BI-RADS

双雷达 无线电技术 乳房成像 列线图 置信区间 医学 乳腺癌 乳腺摄影术 接收机工作特性 放射科 恶性肿瘤 癌症 肿瘤科 内科学
作者
Weiquan Luo,Qing-xiu Huang,Xiaowen Huang,Hang-Tong Hu,Fuqiang Zeng,Wei Wang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:9 (1) 被引量:81
标识
DOI:10.1038/s41598-019-48488-4
摘要

Abstract Radiomics reflects the texture and morphological features of tumours by quantitatively analysing the grey values of medical images. We aim to develop a nomogram incorporating radiomics and the Breast Imaging Reporting and Data System (BI-RADS) for predicting breast cancer in BI-RADS ultrasound (US) category 4 or 5 lesions. From January 2017 to August 2018, a total of 315 pathologically proven breast lesions were included. Patients from the study population were divided into a training group (n = 211) and a validation group (n = 104) according to a cut-off date of March 1 st , 2018. Each lesion was assigned a category (4A, 4B, 4C or 5) according to the second edition of the American College of Radiology (ACR) BI-RADS US. A radiomics score was generated from the US image. A nomogram was developed based on the results of multivariate regression analysis from the training group. Discrimination, calibration and clinical usefulness of the nomogram for predicting breast cancer were assessed in the validation group. The radiomics score included 9 selected radiomics features. The radiomics score and BI-RADS category were independently associated with breast malignancy. The nomogram incorporating the radiomics score and BI-RADS category showed better discrimination (area under the receiver operating characteristic curve [AUC]: 0.928; 95% confidence interval [CI]: 0.876, 0.980) between malignant and benign lesions than either the radiomics score ( P = 0.029) or BI-RADS category ( P = 0.011). The nomogram demonstrated good calibration and clinical usefulness. In conclusion, the nomogram combining the radiomics score and BI-RADS category is potentially useful for predicting breast malignancy in BI-RADS US category 4 or 5 lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LOoomL发布了新的文献求助10
1秒前
绒绒发布了新的文献求助10
2秒前
江月年完成签到 ,获得积分10
2秒前
2秒前
123应助坚定背包采纳,获得10
3秒前
iiianchen发布了新的文献求助20
4秒前
4秒前
一口吸十只猫完成签到,获得积分10
5秒前
许诺完成签到,获得积分10
6秒前
Pursuit发布了新的文献求助10
7秒前
10秒前
高高的高丽完成签到 ,获得积分10
10秒前
好不了一丶完成签到,获得积分20
13秒前
加油小李完成签到 ,获得积分10
13秒前
科研通AI2S应助等待小笼包采纳,获得10
13秒前
记忆力超人完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
传奇3应助小王小王采纳,获得10
16秒前
Denvir完成签到 ,获得积分10
17秒前
所所应助水煮南瓜头采纳,获得10
17秒前
顾矜应助Pursuit采纳,获得10
17秒前
安详书蝶完成签到,获得积分20
19秒前
20秒前
华仔应助研友_LOoomL采纳,获得10
20秒前
吃瓜少女发布了新的文献求助10
20秒前
星黛Lu完成签到,获得积分10
21秒前
淡定碧玉完成签到 ,获得积分10
25秒前
25秒前
xslj完成签到 ,获得积分10
26秒前
羊洋洋发布了新的文献求助10
26秒前
司徒元瑶完成签到 ,获得积分10
26秒前
等待小笼包完成签到,获得积分10
28秒前
11发布了新的文献求助10
29秒前
Raymond应助科研通管家采纳,获得10
30秒前
Hshi应助科研通管家采纳,获得10
30秒前
在水一方应助科研通管家采纳,获得10
30秒前
呐呐应助科研通管家采纳,获得10
30秒前
klb13应助科研通管家采纳,获得10
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268976
求助须知:如何正确求助?哪些是违规求助? 2908483
关于积分的说明 8345844
捐赠科研通 2578717
什么是DOI,文献DOI怎么找? 1402391
科研通“疑难数据库(出版商)”最低求助积分说明 655414
邀请新用户注册赠送积分活动 634562