OpenIE-based approach for Knowledge Graph construction from text

计算机科学 知识图 RDF公司 信息抽取 语义网 二元关系 自然语言处理 代表(政治) 关系抽取 人工智能 情报检索 数学 离散数学 政治 政治学 法学
作者
Jose L. Martinez-Rodriguez,Iván López-Arévalo,Ana B. Ríos-Alvarado
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:113: 339-355 被引量:106
标识
DOI:10.1016/j.eswa.2018.07.017
摘要

Abstract Transforming unstructured text into a formal representation is an important goal of the Semantic Web in order to facilitate the integration and retrieval of information. The construction of Knowledge Graphs (KGs) pursues such an idea, where named entities (real world things) and their relations are extracted from text. In recent years, many approaches for the construction of KGs have been proposed by exploiting Discourse Analysis, Semantic Frames, or Machine Learning algorithms with existing Semantic Web data. Although such approaches are useful for processing taxonomies and connecting beliefs, they provide several linguistic descriptions, which lead to semantic data heterogeneity and thus, complicating data consumption. Moreover, Open Information Extraction (OpenIE) approaches have been slightly explored for the construction of KGs, which provide binary relations representing atomic units of information that could simplify the querying and representation of data. In this paper, we propose an approach to generate KGs using binary relations produced by an OpenIE approach. For such purpose, we present strategies for favoring the extraction and linking of named entities with KG individuals, and additionally, their association with grammatical units that lead to producing more coherent facts. We also provide decisions for selecting the extracted information elements for creating potentially useful RDF triples for the KG. Our results demonstrate that the integration of information extraction units with grammatical structures provides a better understanding of proposition-based representations provided by OpenIE for supporting the construction of KGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhtyzcg发布了新的文献求助10
刚刚
qiang发布了新的文献求助10
1秒前
1秒前
12345完成签到,获得积分10
1秒前
零下一秒发布了新的文献求助10
2秒前
2秒前
丰富青发布了新的文献求助10
2秒前
李嘉图的栗子完成签到,获得积分10
3秒前
3秒前
善学以致用应助淡然冬灵采纳,获得10
4秒前
4秒前
科研通AI5应助没有答案采纳,获得10
5秒前
阿难发布了新的文献求助10
5秒前
考研的青蛙完成签到 ,获得积分10
5秒前
各个器官完成签到 ,获得积分10
5秒前
xiao发布了新的文献求助10
6秒前
苗条白枫完成签到 ,获得积分10
6秒前
零下一秒完成签到,获得积分10
8秒前
爆米花应助wyq采纳,获得10
8秒前
Owen应助wyq采纳,获得10
8秒前
Akim应助wyq采纳,获得10
8秒前
汉堡包应助wyq采纳,获得10
8秒前
爆米花应助wyq采纳,获得10
8秒前
Ava应助wyq采纳,获得10
8秒前
赘婿应助wyq采纳,获得10
8秒前
李爱国应助wyq采纳,获得10
8秒前
SciGPT应助wyq采纳,获得10
8秒前
可爱的函函应助wyq采纳,获得10
8秒前
开心如冬发布了新的文献求助10
8秒前
9秒前
CodeCraft应助甲乙丙丁采纳,获得10
9秒前
聪慧千万发布了新的文献求助10
10秒前
33完成签到,获得积分10
10秒前
11秒前
斯文败类应助伈X采纳,获得10
13秒前
13秒前
科研通AI5应助淡然冬灵采纳,获得10
14秒前
XHL发布了新的文献求助10
14秒前
123完成签到,获得积分20
14秒前
李健的粉丝团团长应助we采纳,获得10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814