Atomistic Insight into Ion Transport and Conductivity in Ga/Al-Substituted Li7La3Zr2O12 Solid Electrolytes

材料科学 离子 电解质 电导率 快离子导体 结晶学 无机化学 物理化学 化学 电极 有机化学
作者
Fabián A. García Daza,Mauricio R. Bonilla,Anna Llordés,Javier Carrasco,Elena Akhmatskaya
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (1): 753-765 被引量:49
标识
DOI:10.1021/acsami.8b17217
摘要

Garnet-structured Li7La3Zr2O12 is a promising solid electrolyte for next-generation solid-state Li batteries. However, sufficiently fast Li-ion mobility required for battery applications only emerges at high temperatures, upon a phase transition to cubic structure. A well-known strategy to stabilize the cubic phase at room temperature relies on aliovalent substitution; in particular, the substitution of Li+ by Al3+ and Ga3+ ions. Yet, despite having the same formal charge, Ga3+ substitution yields higher conductivities (10-3 S/cm) than Al3+ (10-4 S/cm). The reason of such difference in ionic conductivity remains a mystery. Here, we use molecular dynamic simulations and advanced sampling techniques to precisely unveil the atomistic origin of this phenomenon. Our results show that Li+ vacancies generated by Al3+ and Ga3+ substitution remain adjacent to Ga3+ and Al3+ ions, without contributing to the promotion of Li+ mobility. However, while Ga3+ ions tend to allow limited Li+ diffusion within their immediate surroundings, the less repulsive interactions associated with Al3+ ions lead to a complete blockage of neighboring Li+ diffusion paths. This effect is magnified at lower temperatures and explains the higher conductivities observed for Ga-substituted systems. Overall, this study provides a valuable insight into the fundamental ion transport mechanism in the bulk of Ga/Al-substituted Li7La3Zr2O12 and paves the way for rationalizing aliovalent substitution design strategies for enhancing ionic transport in these materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jonas完成签到,获得积分10
刚刚
Yangpc发布了新的文献求助50
1秒前
隐形冬云完成签到,获得积分10
1秒前
香蕉觅云应助强健的糖豆采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
cj发布了新的文献求助10
2秒前
液体剑0932完成签到,获得积分20
3秒前
司空悒发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Jonas发布了新的文献求助10
4秒前
4秒前
li发布了新的文献求助10
4秒前
4秒前
BaiQi发布了新的文献求助10
4秒前
搜集达人应助悠然地八音采纳,获得10
4秒前
学术牛马发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
是园不是圆完成签到 ,获得积分10
5秒前
5秒前
喝可乐的鸣人完成签到,获得积分10
5秒前
CuH发布了新的文献求助10
5秒前
5秒前
slouchy发布了新的文献求助10
6秒前
子车茗应助高高飞风采纳,获得30
6秒前
Truman完成签到,获得积分10
6秒前
猪猪hero发布了新的文献求助10
6秒前
7秒前
FashionBoy应助lt采纳,获得10
7秒前
我是老大应助埃里克求拉采纳,获得10
7秒前
gaterina发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049