亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Simulation Study on Nanoscale Holes Generated by Gold Nanoparticles on Negative Lipid Bilayers

双层 脂质双层 胶体金 脂质双层力学 纳米颗粒 分子动力学 化学物理 纳米尺度 脂质双层相行为 化学 材料科学 纳米技术 生物物理学 计算化学 生物 生物化学
作者
Jiaqi Lin,Yonggang Zheng,Hongwu Zhang,Zhen Chen
出处
期刊:Langmuir [American Chemical Society]
卷期号:27 (13): 8323-8332 被引量:80
标识
DOI:10.1021/la201086u
摘要

Understanding the interactions of gold nanoparticles (AuNPs) with cellular compartments, especially cell membranes, is of fundamental importance in obtaining their control in biomedical applications. An effort is made in this paper to investigate the interactions of 2.2 nm core AuNPs with negative model bilayer membranes by coarse-grained (CG) molecular dynamics (MD) simulation. The CG model of lipid bilayer was taken from Marrink et al. ( J. Phys. Chem. B 2004, 108, 750-760 ), whereas the CG AuNPs model was developed on the basis of both atomistic MD simulations and experimental data. It was found that AuNPs functionalized with cationic ligands penetrated into the negative bilayer membranes and generated significant disruptions on bilayers. The lipids surrounding the nanoparticle were highly disordered and the bulk surface of the bilayer exhibits some defective areas. Most importantly, it is observed that a nanoscale hole can be formed and expanded spontaneously on the peripheral regions of the 20 × 20 nm bilayer. The expansion of the hole is on the time scale of hundreds of nanosceonds. The fully expanded hole had a radius of ∼5.5 nm and could transport water molecules at a rate of up to ∼1100 molecule/ns. However holes could not be formed on a larger bilayer (28 × 28 nm). The factors that can eliminate hole formation on the bilayer also include the decrease of cationic lignads on the AuNP, the reduction of negative lipids in the bilayer, the release of bilayer surface tension, the lowering of temperature, and the addition of a high concentration of salt. The results suggest that a hole can only be formed on living cell membranes under extreme conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢欢发布了新的文献求助10
1秒前
zzf发布了新的文献求助10
2秒前
ok完成签到,获得积分10
3秒前
遇上就这样吧应助ceeray23采纳,获得200
8秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
炙热的雪糕完成签到,获得积分10
14秒前
14秒前
zzf完成签到,获得积分10
19秒前
fangdonghai发布了新的文献求助10
20秒前
lana关注了科研通微信公众号
21秒前
香蕉觅云应助欢欢采纳,获得10
31秒前
39秒前
傻子也能搞学术吗完成签到,获得积分10
41秒前
lld发布了新的文献求助10
43秒前
linkman发布了新的文献求助150
44秒前
prooparu完成签到,获得积分10
44秒前
赘婿应助wavelet采纳,获得10
48秒前
桐桐应助陈陈要毕业采纳,获得30
52秒前
今后应助lld采纳,获得10
52秒前
55秒前
lld完成签到,获得积分10
59秒前
1分钟前
1分钟前
充电宝应助fangdonghai采纳,获得10
1分钟前
1分钟前
1分钟前
研友_VZG7GZ应助ceeray23采纳,获得20
1分钟前
科研通AI2S应助蜘蛛侠采纳,获得30
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
班里发布了新的文献求助10
1分钟前
1分钟前
1分钟前
yalixiaoming应助lana采纳,获得10
1分钟前
班里完成签到,获得积分10
1分钟前
pin发布了新的文献求助10
1分钟前
Cosmosurfer完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664066
求助须知:如何正确求助?哪些是违规求助? 4857165
关于积分的说明 15107066
捐赠科研通 4822504
什么是DOI,文献DOI怎么找? 2581501
邀请新用户注册赠送积分活动 1535723
关于科研通互助平台的介绍 1493949