劈形算符
有界函数
组合数学
物理
弱解
边界(拓扑)
扩散
数学分析
数学
热力学
欧米茄
量子力学
作者
Youshan Tao,Michael Winkler
出处
期刊:Discrete and Continuous Dynamical Systems
[American Institute of Mathematical Sciences]
日期:2012-01-01
卷期号:32 (5): 1901-1914
被引量:167
标识
DOI:10.3934/dcds.2012.32.1901
摘要
This paper deals with a boundary-value problem intwo-dimensional smoothly bounded domains for the coupledchemotaxis-fluid model$$ \left\{ \begin{array}{l} n_t+ u\cdot \nabla n=\Delta n^m - \nabla \cdot (n\chi(c)\nabla c)\\ c_t+ u\cdot \nabla c=\Delta c-nf(c)\\ u_t +\nabla P-\eta \Delta u+n \nabla \phi=0 \\ \nabla \cdot u=0, \end{array} \right.$$which describes the motion of oxygen-driven swimming bacteria in anincompressible fluid. The given functions $\chi$ and $f$ are supposed to besufficiently smooth and such that $f(0)=0$. It is proved that global bounded weak solutions exist whenever$m>1$ and the initial data $(n_0,c_0,u_0)$ are sufficiently regular satisfying$n_0 \ge 0$ and $c_0\ge 0$.This extends a recent result byDi Francesco, Lorz and Markowich (Discrete Cont. Dyn. Syst. A 28 (2010))which asserts global existence of weak solutions under the constraint $m \in (\frac{3}{2},2]$.
科研通智能强力驱动
Strongly Powered by AbleSci AI