Raw Wind Data Preprocessing: A Data-Mining Approach

离群值 数据挖掘 原始数据 计算机科学 风力发电 预处理器 局部异常因子 滤波器(信号处理) 数据预处理 对象(语法) 风速 异常检测 工程类 人工智能 地理 电气工程 计算机视觉 气象学 程序设计语言
作者
Le Zheng,Wei Hu,Yong Min
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:6 (1): 11-19 被引量:99
标识
DOI:10.1109/tste.2014.2355837
摘要

Wind energy integration research generally relies on complex sensors located at remote sites. The procedure for generating high-level synthetic information from databases containing large amounts of low-level data must therefore account for possible sensor failures and imperfect input data. The data input is highly sensitive to data quality. To address this problem, this paper presents an empirical methodology that can efficiently preprocess and filter the raw wind data using only aggregated active power output and the corresponding wind speed values at the wind farm. First, raw wind data properties are analyzed, and all the data are divided into six categories according to their attribute magnitudes from a statistical perspective. Next, the weighted distance, a novel concept of the degree of similarity between the individual objects in the wind database and the local outlier factor (LOF) algorithm, is incorporated to compute the outlier factor of every individual object, and this outlier factor is then used to assess which category an object belongs to. Finally, the methodology was tested successfully on the data collected from a large wind farm in northwest China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
邬傥完成签到,获得积分10
2秒前
tomato应助执着采纳,获得20
3秒前
大方嵩发布了新的文献求助10
3秒前
梓ccc完成签到,获得积分10
3秒前
3秒前
求助发布了新的文献求助10
4秒前
风雨1210发布了新的文献求助10
4秒前
4秒前
5秒前
小梁要加油完成签到,获得积分20
5秒前
Alpha发布了新的文献求助10
6秒前
刘鹏宇发布了新的文献求助10
7秒前
zhangscience完成签到,获得积分10
7秒前
可爱的函函应助若狂采纳,获得10
8秒前
小蘑菇应助阿美采纳,获得30
8秒前
科研通AI2S应助机智小虾米采纳,获得10
9秒前
充电宝应助Xx.采纳,获得10
10秒前
zhangscience发布了新的文献求助10
11秒前
深情安青应助大方嵩采纳,获得10
12秒前
英俊的铭应助大方嵩采纳,获得10
12秒前
李还好完成签到,获得积分10
13秒前
满意的柏柳完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
buno应助88采纳,获得10
16秒前
17秒前
三千世界完成签到,获得积分10
17秒前
17秒前
愉快的访旋完成签到,获得积分10
18秒前
Alpha完成签到,获得积分10
19秒前
大大发布了新的文献求助30
19秒前
翠翠发布了新的文献求助10
20秒前
半山发布了新的文献求助10
21秒前
21秒前
天天快乐应助CO2采纳,获得10
21秒前
隐形曼青应助junzilan采纳,获得10
22秒前
Dksido发布了新的文献求助10
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808