Use of Artificial Neural Networks to Predict Recurrent Lumbar Disk Herniation

医学 腰椎间盘突出症 逻辑回归 接收机工作特性 可视模拟标度 腰椎 外科 内科学
作者
Parisa Azimi,Hassan Reza Mohammadi,Edward C. Benzel,Sohrab Shahzadi,Shirzad Azhari
出处
期刊:Journal of Spinal Disorders & Techniques [Ovid Technologies (Wolters Kluwer)]
卷期号:28 (3): E161-E165 被引量:34
标识
DOI:10.1097/bsd.0000000000000200
摘要

Background: The aim of this study was to develop an artificial neural network (ANN) model to predict recurrent lumbar disk herniation (LDH). Methods: An ANN model and a logistic regression model were used to predict recurrent LDH. The age, sex, duration of symptoms, smoking status, recurrent LDH, level of herniation, type of herniation, sports activity; occupational lifting, occupational driving, duration of symptoms, visual analog scale (VAS), the Zung Depression Scale (ZDS), and the Japanese Orthopaedic Association (JOA) Score, were determined as the input variables for the established ANN model. The Macnab classification, VAS, and JOA were used for outcome assessment. ANNs on data from LDH patients, who underwent surgery, were trained to predict LDH using several input variables. The patients were divided into a recurrent LDH group (R group) and a primary LDH group (P group). Sensitivity analysis was applied to identify the relevant variables. The receiver-operating characteristic curve, accuracy rate of predicting, and Hosmer-Lemeshow statistics were considered for evaluating the 2 models. Results: A total of 402 patients were categorized into training, testing, and validation data sets consisting of 201, 101, and 100 cases, respectively. The recurrence rate was 8.7%, and the median time to recurrence was 26.2 months (SD=4 mo). The VAS of leg/back pain and JOA were improved at 1-year follow-up (P<0.05) and no significant difference was observed between the 2 groups. Surgical successful outcome was categorized as: excellent, 31.1%; good, 44.3%; fair, 18.9%; and poor, 5.7% at 1-year follow-up. Compared with the logistic regression model, the ANN model was associated with superior results: accuracy rate, 94.1%; Hosmer-Lemeshow statistic, 40.2%; and area under the curve, 0.83% of patients. Conclusion: The findings show that an ANNs can be used to predict the diagnostic statues of recurrent and nonrecurrent group of LDH patients before the first or index microdiscectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王小滢发布了新的文献求助150
1秒前
猪猪完成签到 ,获得积分10
1秒前
糖糖糖发布了新的文献求助10
1秒前
3秒前
晏清发布了新的文献求助10
3秒前
无情寒珊完成签到,获得积分10
3秒前
wanci应助hode采纳,获得10
3秒前
4秒前
loong发布了新的文献求助10
4秒前
5秒前
5秒前
搜集达人应助cc采纳,获得10
5秒前
愤怒也呵呵完成签到,获得积分10
5秒前
orixero应助Aphelios采纳,获得10
5秒前
5秒前
英姑应助白白不读书采纳,获得10
5秒前
6秒前
morlison完成签到,获得积分10
6秒前
852应助炙热的白风采纳,获得10
7秒前
111发布了新的文献求助10
8秒前
8秒前
温暖的惜萱完成签到,获得积分10
8秒前
若朴祭司发布了新的文献求助10
8秒前
8秒前
Rui完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
顺利大门发布了新的文献求助10
11秒前
彼得大帝发布了新的文献求助10
11秒前
11发布了新的文献求助20
11秒前
润加油啊完成签到 ,获得积分10
11秒前
Hello应助小马采纳,获得10
11秒前
Kenny发布了新的文献求助10
12秒前
烟花应助柔弱的恋风采纳,获得10
12秒前
Watson发布了新的文献求助10
13秒前
13秒前
14秒前
在水一方应助冷傲初夏采纳,获得10
14秒前
彭于晏应助1236采纳,获得10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254507
求助须知:如何正确求助?哪些是违规求助? 2896674
关于积分的说明 8293818
捐赠科研通 2565675
什么是DOI,文献DOI怎么找? 1393195
科研通“疑难数据库(出版商)”最低求助积分说明 652443
邀请新用户注册赠送积分活动 630000