已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluating Spatial Representativeness of Station Observations for Remotely Sensed Leaf Area Index Products

环境科学 遥感 归一化差异植被指数 空间分析 土地覆盖 植被(病理学) 比例(比率) 空间变异性 计算机科学 共同空间格局 采样(信号处理)
作者
Baodong Xu,Jing Li,Qinhuo Liu,Alfredo Huete,Qiang Yu,Yelu Zeng,Gaofei Yin,Jing Zhao,Le Yang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:9 (7): 3267-3282 被引量:13
标识
DOI:10.1109/jstars.2016.2560878
摘要

Continuous leaf area index (LAI) observations from global ground stations are an important reference dataset for the validation of remotely sensed LAI products. In this study, a pragmatic approach is presented for evaluating the spatial representativeness of station-observed LAI dataset in the product pixel grid. Three evaluation indicators, including dominant vegetation type percent (DVTP), relative absolute error (RAE) and coefficient of sill (CS), were established to quantify different levels of spatial representativeness. The DVTP was used to evaluate whether the station-observed vegetation type was the dominant one in the pixel grid, and the RAE and CS were applied to quantify the point-to-area consistency for a given station observation and the spatial heterogeneity caused by the different density of vegetation within the pixel, respectively. The proposed approach was applied to 25 stations from the Chinese Ecosystem Research Network, and results show significant differences of representativeness errors at different levels. The spatial representativeness for different stations varied seasonally with different vegetation growth stages due to temporal changes in heterogeneity, but the spatial representativeness remained consistent at interannual timeframes due to the relatively stable vegetation structure and pattern between adjacent years. A large error can occur in MOD15A2 product validation when the representativeness level of station LAI observations is low. This approach can effectively distinguish various levels of spatial representativeness for the station-observed LAI dataset at the pixel grid scale, which can consequently improve the reliability of LAI product validation by selecting LAI observations with a high degree of representativeness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xhylalalala完成签到,获得积分10
1秒前
橙子味的邱憨憨完成签到 ,获得积分10
2秒前
铃儿完成签到 ,获得积分10
4秒前
7秒前
土味霸总发布了新的文献求助30
7秒前
10秒前
钱百川发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
15秒前
不吃草莓味完成签到 ,获得积分10
15秒前
Louise发布了新的文献求助10
16秒前
明理从露完成签到 ,获得积分10
19秒前
田様应助钱百川采纳,获得10
21秒前
大模型应助摸鱼采纳,获得10
22秒前
sunn完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
孙中华完成签到 ,获得积分10
25秒前
ya完成签到,获得积分10
27秒前
hhhhhhhhhh完成签到 ,获得积分10
29秒前
33秒前
醉书生应助科研通管家采纳,获得10
36秒前
orixero应助科研通管家采纳,获得10
37秒前
充电宝应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
摸鱼发布了新的文献求助10
38秒前
41秒前
42秒前
量子星尘发布了新的文献求助10
44秒前
苹果祥发布了新的文献求助10
47秒前
烁果累累完成签到 ,获得积分10
49秒前
科研通AI5应助henxi采纳,获得10
51秒前
艾力0531发布了新的文献求助10
52秒前
量子星尘发布了新的文献求助10
53秒前
YY完成签到 ,获得积分10
54秒前
55秒前
科研通AI5应助henxi采纳,获得10
58秒前
Louise完成签到,获得积分10
58秒前
半只熊完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
追寻完成签到 ,获得积分10
1分钟前
一只熊完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666287
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762737
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185