清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sparse Representation for Target Detection in Hyperspectral Imagery

高光谱成像 子空间拓扑 稀疏逼近 人工智能 压缩传感 像素 模式识别(心理学) 计算机科学 算法 数学 贪婪算法 目标检测
作者
Yi Chen,Nasser M. Nasrabadi,Trac D. Tran
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:5 (3): 629-640 被引量:395
标识
DOI:10.1109/jstsp.2011.2113170
摘要

In this paper, we propose a new sparsity-based algorithm for automatic target detection in hyperspectral imagery (HSI). This algorithm is based on the concept that a pixel in HSI lies in a low-dimensional subspace and thus can be represented as a sparse linear combination of the training samples. The sparse representation (a sparse vector corresponding to the linear combination of a few selected training samples) of a test sample can be recovered by solving an l 0 -norm minimization problem. With the recent development of the compressed sensing theory, such minimization problem can be recast as a standard linear programming problem or efficiently approximated by greedy pursuit algorithms. Once the sparse vector is obtained, the class of the test sample can be determined by the characteristics of the sparse vector on reconstruction. In addition to the constraints on sparsity and reconstruction accuracy, we also exploit the fact that in HSI the neighboring pixels have a similar spectral characteristic (smoothness). In our proposed algorithm, a smoothness constraint is also imposed by forcing the vector Laplacian at each reconstructed pixel to be minimum all the time within the minimization process. The proposed sparsity-based algorithm is applied to several hyperspectral imagery to detect targets of interest. Simulation results show that our algorithm outperforms the classical hyperspectral target detection algorithms, such as the popular spectral matched filters, matched subspace detectors, adaptive subspace detectors, as well as binary classifiers such as support vector machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助ppf采纳,获得10
9秒前
王佳亮完成签到,获得积分10
14秒前
火星上的雨柏完成签到 ,获得积分10
15秒前
秋秋完成签到 ,获得积分10
22秒前
22秒前
ceeray23发布了新的文献求助20
23秒前
徐团伟完成签到 ,获得积分10
23秒前
coolplex完成签到 ,获得积分10
30秒前
莃莃莃喜欢你完成签到 ,获得积分10
30秒前
李健的小迷弟应助ceeray23采纳,获得20
31秒前
桐桐应助ceeray23采纳,获得20
35秒前
43秒前
t铁核桃1985完成签到 ,获得积分0
43秒前
点点完成签到 ,获得积分10
45秒前
45秒前
ppf发布了新的文献求助10
49秒前
59秒前
空儒完成签到 ,获得积分10
1分钟前
Criminology34应助CXS采纳,获得10
1分钟前
1分钟前
lsl完成签到 ,获得积分10
1分钟前
Criminology34应助CXS采纳,获得10
1分钟前
Tree_QD完成签到 ,获得积分10
1分钟前
无极2023完成签到 ,获得积分10
1分钟前
仙女完成签到 ,获得积分10
1分钟前
1分钟前
kittykitten完成签到 ,获得积分10
1分钟前
刘丰完成签到 ,获得积分10
2分钟前
爆米花应助ppf采纳,获得10
2分钟前
正直的夏真完成签到 ,获得积分10
2分钟前
2分钟前
慕豁发布了新的文献求助10
2分钟前
2分钟前
科科通通完成签到,获得积分10
2分钟前
慕豁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yushiolo完成签到 ,获得积分10
2分钟前
ppf发布了新的文献求助10
2分钟前
邓洁宜完成签到,获得积分10
2分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614971
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551