Sparse Representation for Target Detection in Hyperspectral Imagery

高光谱成像 子空间拓扑 稀疏逼近 人工智能 压缩传感 像素 模式识别(心理学) 计算机科学 算法 数学 贪婪算法 目标检测
作者
Yi Chen,Nasser M. Nasrabadi,Trac D. Tran
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:5 (3): 629-640 被引量:395
标识
DOI:10.1109/jstsp.2011.2113170
摘要

In this paper, we propose a new sparsity-based algorithm for automatic target detection in hyperspectral imagery (HSI). This algorithm is based on the concept that a pixel in HSI lies in a low-dimensional subspace and thus can be represented as a sparse linear combination of the training samples. The sparse representation (a sparse vector corresponding to the linear combination of a few selected training samples) of a test sample can be recovered by solving an l 0 -norm minimization problem. With the recent development of the compressed sensing theory, such minimization problem can be recast as a standard linear programming problem or efficiently approximated by greedy pursuit algorithms. Once the sparse vector is obtained, the class of the test sample can be determined by the characteristics of the sparse vector on reconstruction. In addition to the constraints on sparsity and reconstruction accuracy, we also exploit the fact that in HSI the neighboring pixels have a similar spectral characteristic (smoothness). In our proposed algorithm, a smoothness constraint is also imposed by forcing the vector Laplacian at each reconstructed pixel to be minimum all the time within the minimization process. The proposed sparsity-based algorithm is applied to several hyperspectral imagery to detect targets of interest. Simulation results show that our algorithm outperforms the classical hyperspectral target detection algorithms, such as the popular spectral matched filters, matched subspace detectors, adaptive subspace detectors, as well as binary classifiers such as support vector machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LioXH完成签到,获得积分10
1秒前
yu完成签到 ,获得积分10
1秒前
1秒前
1111完成签到,获得积分10
1秒前
机灵的煎蛋完成签到,获得积分10
1秒前
顺利映天完成签到,获得积分10
2秒前
2秒前
我是老大应助受伤雁荷采纳,获得10
3秒前
所所应助JJun采纳,获得10
3秒前
haizz发布了新的文献求助10
4秒前
4秒前
隋阳完成签到 ,获得积分10
4秒前
思源应助HYF采纳,获得10
4秒前
大方安白发布了新的文献求助10
4秒前
4秒前
于鱼完成签到,获得积分10
5秒前
三三四发布了新的文献求助10
6秒前
万能图书馆应助三金采纳,获得10
6秒前
可爱的函函应助adkis采纳,获得10
6秒前
波特卡斯D艾斯完成签到 ,获得积分10
7秒前
7秒前
义气的翅膀完成签到,获得积分10
8秒前
jscr发布了新的文献求助10
8秒前
liang发布了新的文献求助10
8秒前
9秒前
鲁涔完成签到,获得积分10
9秒前
10秒前
11秒前
橙子皮发布了新的文献求助10
11秒前
King完成签到,获得积分10
12秒前
12秒前
12秒前
爆米花应助独特沛白采纳,获得10
12秒前
大方安白完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
茶巽完成签到,获得积分10
14秒前
Mmmm发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197