Sparse Representation for Target Detection in Hyperspectral Imagery

高光谱成像 子空间拓扑 稀疏逼近 人工智能 压缩传感 像素 模式识别(心理学) 计算机科学 算法 数学 贪婪算法 目标检测
作者
Yi Chen,Nasser M. Nasrabadi,Trac D. Tran
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:5 (3): 629-640 被引量:395
标识
DOI:10.1109/jstsp.2011.2113170
摘要

In this paper, we propose a new sparsity-based algorithm for automatic target detection in hyperspectral imagery (HSI). This algorithm is based on the concept that a pixel in HSI lies in a low-dimensional subspace and thus can be represented as a sparse linear combination of the training samples. The sparse representation (a sparse vector corresponding to the linear combination of a few selected training samples) of a test sample can be recovered by solving an l 0 -norm minimization problem. With the recent development of the compressed sensing theory, such minimization problem can be recast as a standard linear programming problem or efficiently approximated by greedy pursuit algorithms. Once the sparse vector is obtained, the class of the test sample can be determined by the characteristics of the sparse vector on reconstruction. In addition to the constraints on sparsity and reconstruction accuracy, we also exploit the fact that in HSI the neighboring pixels have a similar spectral characteristic (smoothness). In our proposed algorithm, a smoothness constraint is also imposed by forcing the vector Laplacian at each reconstructed pixel to be minimum all the time within the minimization process. The proposed sparsity-based algorithm is applied to several hyperspectral imagery to detect targets of interest. Simulation results show that our algorithm outperforms the classical hyperspectral target detection algorithms, such as the popular spectral matched filters, matched subspace detectors, adaptive subspace detectors, as well as binary classifiers such as support vector machines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃紫完成签到,获得积分10
1秒前
3秒前
勤劳小海豚完成签到,获得积分10
4秒前
zxh发布了新的文献求助10
5秒前
bofu发布了新的文献求助10
5秒前
JaneChen发布了新的文献求助10
6秒前
8秒前
8秒前
zzm发布了新的文献求助10
9秒前
lalala发布了新的文献求助10
12秒前
科研通AI2S应助方知采纳,获得10
14秒前
15秒前
17秒前
研友_Zr2mxZ完成签到,获得积分10
17秒前
科目三应助Suu采纳,获得10
17秒前
18秒前
852应助zzm采纳,获得10
18秒前
可爱的函函应助郑小七采纳,获得10
18秒前
慕青应助丰那个丰采纳,获得10
19秒前
宋娣关注了科研通微信公众号
19秒前
bofu发布了新的文献求助10
20秒前
KK关闭了KK文献求助
20秒前
坦率的高烽完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
23秒前
bofu发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
蝌蚪发布了新的文献求助10
28秒前
好想睡大觉完成签到,获得积分10
28秒前
懵懂的子骞完成签到 ,获得积分10
29秒前
31秒前
32秒前
bofu发布了新的文献求助10
33秒前
33秒前
33秒前
34秒前
zqlxueli完成签到 ,获得积分10
35秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163