同步(交流)
聚类分析
混乱的
混沌同步
边界(拓扑)
期限(时间)
计算机科学
同步网络
拓扑(电路)
控制理论(社会学)
混沌系统
数学
物理
数学分析
人工智能
组合数学
控制(管理)
量子力学
作者
Sergiy Yanchuk,Yuri Maistrenko,Erik Mosekilde
标识
DOI:10.1016/s0378-4754(00)00276-7
摘要
We examine the problem of partial synchronization (or clustering) in diffusively coupled arrays of identical chaotic oscillators with periodic boundary conditions. The term partial synchronization denotes a dynamic state in which groups of oscillators synchronize with one another, but there is no synchronization among the groups. By combining numerical and analytical methods we prove the existence of partially synchronized states for systems of three and four oscillators. We determine the stable clustering structures and describe the dynamics within the clusters. Illustrative examples are presented for coupled Rössler systems. At the end of the paper, synchronization in larger arrays of chaotic oscillators is discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI