Doctor, What Are My Chances of Having a Positive Sentinel Node? A Validated Nomogram for Risk Estimation

列线图 医学 前哨淋巴结 乳腺癌 转移 逻辑回归 肿瘤科 淋巴血管侵犯 内科学 活检 哨兵节点 癌症 放射科
作者
José Luiz Barbosa Bevilacqua,Michael W. Kattan,Jane V. Fey,Hiram S. Cody,Patrick I. Borgen,Kimberly J. Van Zee
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:25 (24): 3670-3679 被引量:313
标识
DOI:10.1200/jco.2006.08.8013
摘要

Purpose Lymph node metastasis is a multifactorial event. Several variables have been described as predictors of lymph node metastasis in breast cancer. However, it is difficult to apply these data—usually expressed as odds ratios—to calculate the probability of sentinel lymph node (SLN) metastasis for a specific patient. We developed a user-friendly prediction model (nomogram) based on a large data set to assist in predicting the presence of SLN metastasis. Patients and Methods Clinical and pathologic features of 3,786 sequential SLN biopsy procedures were assessed with multivariable logistic regression to predict the presence of SLN metastasis in breast cancer. The model was subsequently applied to 1,545 sequential SLN biopsies. A nomogram was created from the logistic regression model. A computerized version of the nomogram was developed and is available on the Memorial Sloan-Kettering Cancer Center (New York, NY) Web site. Results Age, tumor size, tumor type, lymphovascular invasion, tumor location, multifocality, and estrogen and progesterone receptors were associated with SLN metastasis in multivariate analysis. The nomogram was accurate and discriminating, with an area under the receiver operating characteristic curve of 0.754 when applied to the validation group. Conclusion Newly diagnosed breast cancer patients are increasingly interested in information about their disease. This nomogram is a useful tool that helps physicians and patients to accurately predict the likelihood of SLN metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JiangSir完成签到,获得积分10
刚刚
科研通AI2S应助嘤鸣采纳,获得10
1秒前
Jasper应助发疯恐龙采纳,获得10
1秒前
byron完成签到,获得积分10
2秒前
周凡淇发布了新的文献求助10
2秒前
gqjq完成签到,获得积分10
3秒前
5秒前
kate完成签到,获得积分10
5秒前
星空舒完成签到,获得积分10
7秒前
8秒前
快乐再出发完成签到,获得积分10
8秒前
鱿鱼发布了新的文献求助10
9秒前
9秒前
时尚的青丝完成签到,获得积分20
9秒前
於成协完成签到,获得积分10
9秒前
发疯恐龙完成签到,获得积分10
9秒前
思源应助子车储采纳,获得50
10秒前
10秒前
cloudy_cj发布了新的文献求助10
11秒前
12秒前
12秒前
anan发布了新的文献求助10
14秒前
MKYY发布了新的文献求助10
14秒前
帅哥完成签到,获得积分20
15秒前
我爱科研发布了新的文献求助10
15秒前
_是小满发布了新的文献求助10
16秒前
gwff完成签到,获得积分20
16秒前
念姬完成签到 ,获得积分10
16秒前
Zzz完成签到,获得积分10
16秒前
执着静竹完成签到,获得积分10
16秒前
CipherSage应助小垃圾采纳,获得10
16秒前
人生若只如初见完成签到,获得积分20
17秒前
简简发布了新的文献求助10
18秒前
自然怀梦完成签到,获得积分10
18秒前
鱿鱼完成签到,获得积分10
18秒前
TheBugsss完成签到,获得积分10
18秒前
852应助钦天监正采纳,获得10
18秒前
18秒前
19秒前
SIDEsss应助完美的越彬采纳,获得10
20秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413801
求助须知:如何正确求助?哪些是违规求助? 3015998
关于积分的说明 8873555
捐赠科研通 2703697
什么是DOI,文献DOI怎么找? 1482414
科研通“疑难数据库(出版商)”最低求助积分说明 685298
邀请新用户注册赠送积分活动 680017