Integrative Analysis of Transcriptomic and Epigenomic Data to Reveal Regulation Patterns for BMD Variation

表观遗传学 DNA甲基化 转录组 生物 基因调控网络 计算生物学 基因表达谱 小RNA 功能基因组学 微阵列分析技术 小桶 基因表达调控 生物信息学 遗传学 基因 基因组学 基因表达 基因组
作者
Jigang Zhang,Lijun Tan,Chao Xu,Hao He,Qing Tian,Yu Zhou,Chuan Qiu,Xiang‐Ding Chen,Hong‐Wen Deng
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:10 (9): e0138524-e0138524 被引量:24
标识
DOI:10.1371/journal.pone.0138524
摘要

Integration of multiple profiling data and construction of functional gene networks may provide additional insights into the molecular mechanisms of complex diseases. Osteoporosis is a worldwide public health problem, but the complex gene-gene interactions, post-transcriptional modifications and regulation of functional networks are still unclear. To gain a comprehensive understanding of osteoporosis etiology, transcriptome gene expression microarray, epigenomic miRNA microarray and methylome sequencing were performed simultaneously in 5 high hip BMD (Bone Mineral Density) subjects and 5 low hip BMD subjects. SPIA (Signaling Pathway Impact Analysis) and PCST (Prize Collecting Steiner Tree) algorithm were used to perform pathway-enrichment analysis and construct the interaction networks. Through integrating the transcriptomic and epigenomic data, firstly we identified 3 genes (FAM50A, ZNF473 and TMEM55B) and one miRNA (hsa-mir-4291) which showed the consistent association evidence from both gene expression and methylation data; secondly in network analysis we identified an interaction network module with 12 genes and 11 miRNAs including AKT1, STAT3, STAT5A, FLT3, hsa-mir-141 and hsa-mir-34a which have been associated with BMD in previous studies. This module revealed the crosstalk among miRNAs, mRNAs and DNA methylation and showed four potential regulatory patterns of gene expression to influence the BMD status. In conclusion, the integration of multiple layers of omics can yield in-depth results than analysis of individual omics data respectively. Integrative analysis from transcriptomics and epigenomic data improves our ability to identify causal genetic factors, and more importantly uncover functional regulation pattern of multi-omics for osteoporosis etiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11发布了新的文献求助10
1秒前
大个应助limof采纳,获得10
1秒前
2秒前
竹筏过海应助chen采纳,获得50
3秒前
3秒前
schoolboy发布了新的文献求助10
3秒前
完美世界应助洛尚采纳,获得10
3秒前
苹果萧发布了新的文献求助10
4秒前
钟是一梦发布了新的文献求助10
5秒前
Lucas应助Light采纳,获得10
6秒前
6秒前
6秒前
李健的粉丝团团长应助Ll采纳,获得10
6秒前
6秒前
JQKing完成签到,获得积分10
7秒前
7秒前
zs完成签到 ,获得积分10
7秒前
7秒前
11完成签到,获得积分20
7秒前
一定会更好的完成签到,获得积分10
8秒前
Pangsj发布了新的文献求助10
8秒前
姆姆完成签到,获得积分10
8秒前
领导范儿应助落晨采纳,获得10
8秒前
9秒前
善良的安卉完成签到,获得积分10
9秒前
淡定吃吃发布了新的文献求助10
10秒前
yyf关闭了yyf文献求助
10秒前
11秒前
kokodayour完成签到,获得积分10
11秒前
Quin完成签到,获得积分10
11秒前
11秒前
冷艳乐松完成签到,获得积分10
12秒前
12秒前
12秒前
诸葛雪兰完成签到,获得积分10
13秒前
洛尚完成签到,获得积分10
13秒前
czq完成签到,获得积分10
13秒前
VVhahaha完成签到,获得积分10
14秒前
limof发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740