Membranes from Blended Ionomer/PVDF Nanofibers: I. PFSA/PVDF and PFIA/PVDF Fiber Spinning and Membrane Fabrication

静电纺丝 材料科学 离聚物 纳米纤维 聚合物 复合材料 化学工程 直接甲醇燃料电池 肿胀 的 质子交换膜燃料电池 复合数 高分子化学 化学 共聚物 电极 生物化学 阳极 物理化学 工程类
作者
Leslie Dos Santos,Jun Woo Park,Ryszard Wycisk,Peter N. Pintauro,Graeme Nawn,Keti Vezzù,Enrico Negro,Federico Bertasi,Vito Di Noto
出处
期刊:Meeting abstracts 卷期号:MA2015-02 (37): 1468-1468
标识
DOI:10.1149/ma2015-02/37/1468
摘要

Blends and composites of various perfluoroionomers and uncharged polymers, e.g., poly(vinylidene fluoride) (PVDF), have been widely studied as the proton conducting membrane material for direct methanol and hydrogen/air fuel cells. The general idea of blending was to decouple the mechanical and swelling properties of a membrane from its proton conductivity. Thus, for a hydrogen/air fuel cell, the goal was to fabricate a membrane with low sheet resistance, low areal swelling, and good mechanical properties. For a direct methanol fuel cell membrane, blended were made to lower methanol crossover methanol while maintaining a high proton conductivity. In 2008, Pintauro and co-workers [1] showed how nanofiber electrospinning can be used to fabricate composite fuel cell membranes. The method was an alternative to traditional blending. These early membranes were made by electrospinning an ionomer fiber mat followed by the impregnation of an uncharged, reinforcing polymer into the inter-fiber voids; inverse structures where an uncharged polymer was electrospun and the voids were filled with an ionomer were also studied [2]. Dual-fiber electrospinning was introduced in 2011 by Ballengee and Pintauro [3] as a means to eliminate a separate interfiber void-filling impregnation step during nanofiber composite membrane fabrication. The ionomer and uncharged polymers were simultaneously electrospun as separate fibers that co-deposited as a well-mixed mat on the collector surface. Subsequent processing via hot-pressing, and either annealing or solvent vapor exposure, induced the flow of one of the polymer components into the interfiber void space while retaining the nanofiber morphology of the second polymer. Two distinct morphologies were produced from such dual fiber mats: (i) a network of ionomer nanofibers embedded in an uncharged reinforcing polymer matrix and (ii) an ionomer matrix reinforced by a network of uncharged nanofibers. Membranes were prepared via dual fiber electrospinning using various polymer combinations, including Nafion, Aquivion and 3M Company PFSA ionomers, and polyphenylsulfone, poly(vinylidene fluoride), and polyamide-imide as the uncharged components. We have recently developed a new electrospinning strategy for membrane preparation, were a solution of a binary polymer mixture is electrospun and then the single fiber mat is hot-pressed into a dense blended membrane. Here, we exploit the electrospinning process to insure blending of seemingly incompatible polymers (i.e., thorough mixing of the polymer components as the electrospinning solution emerges from the spinneret tip followed by rapid solvent evaporation and the “freezing in” of a blended morphology within a 100-500 nm diameter fiber. In this presentation the methods used to electrospin various single fibers blends of perfluoroionomers with Kynar Ò HSV 900 PVDF will be presented, with a focus on Nafion Ò perflourosulfonic acid ionomer and low equivalent weight PFIA ionomer from 3M Company. Procedures for converting the nanofiber mats into dense and defect-free membranes will be described. Preliminary characterization results will be summarized (water swelling, proton conductivity, and mechanical properties) and contrasted with dual fiber membranes and/or conventional solution cast blended films. REFERENCES [1] J. Choi, K. M. Lee, R. Wycisk, P. N. Pintauro and P. T. Mather, Macromolecules , 41 , 4569, 2008. [2] M. Gummalla, Z. Yang, P. Pintauro, K.M. Lee, R.Wycisk, US Patent Application , US 13/995,580, 2011 [3] J. B. Ballengee and P. N. Pintauro, Macromolecules , 44 , 7307, 2011.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦克发布了新的文献求助10
6秒前
鄢廷芮完成签到 ,获得积分10
15秒前
科研通AI2S应助燕子采纳,获得10
20秒前
Willow完成签到,获得积分10
20秒前
村口的帅老头完成签到 ,获得积分10
29秒前
燕子完成签到,获得积分10
33秒前
xue112完成签到 ,获得积分10
36秒前
从容映易完成签到,获得积分10
53秒前
快乐的鱼完成签到,获得积分10
55秒前
空中风也完成签到 ,获得积分10
56秒前
沉静的清涟完成签到,获得积分10
1分钟前
zx完成签到 ,获得积分10
1分钟前
风不尽,树不静完成签到 ,获得积分10
1分钟前
gishisei完成签到,获得积分10
1分钟前
大饼完成签到 ,获得积分10
1分钟前
qinghe完成签到 ,获得积分10
1分钟前
aaa0001984完成签到,获得积分0
1分钟前
求顺利毕业完成签到 ,获得积分10
1分钟前
小墨墨完成签到 ,获得积分10
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
黑包包大人完成签到,获得积分10
1分钟前
麦克完成签到,获得积分10
1分钟前
俊俊完成签到 ,获得积分0
1分钟前
Arthur完成签到 ,获得积分10
2分钟前
Shawn完成签到 ,获得积分10
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
2分钟前
优秀毛衣完成签到,获得积分10
2分钟前
小鞋完成签到,获得积分10
2分钟前
大方的笑萍完成签到 ,获得积分10
2分钟前
橘子海完成签到 ,获得积分10
2分钟前
yilin完成签到 ,获得积分10
2分钟前
CMC完成签到 ,获得积分10
2分钟前
shi0331完成签到,获得积分10
2分钟前
花花糖果完成签到 ,获得积分10
2分钟前
爱听歌的大地完成签到 ,获得积分10
2分钟前
568923完成签到,获得积分10
2分钟前
发疯的乔治完成签到 ,获得积分10
2分钟前
感动书文完成签到,获得积分10
2分钟前
不良帅完成签到,获得积分10
2分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371330
求助须知:如何正确求助?哪些是违规求助? 2989504
关于积分的说明 8735970
捐赠科研通 2672778
什么是DOI,文献DOI怎么找? 1464212
科研通“疑难数据库(出版商)”最低求助积分说明 677441
邀请新用户注册赠送积分活动 668743