Amplitude-Varying Perturbation for Balancing Privacy and Utility in Federated Learning

计算机科学 差别隐私 振幅 高斯噪声 人工智能 噪音(视频) 人工神经网络 摄动(天文学) 感知器 机器学习 算法 物理 量子力学 图像(数学)
作者
Xin Yuan,Wei Ni,Ming Ding,Kang Wei,Jun Li,H. Vincent Poor
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 1884-1897 被引量:25
标识
DOI:10.1109/tifs.2023.3258255
摘要

While preserving the privacy of federated learning (FL), differential privacy (DP) inevitably degrades the utility (i.e., accuracy) of FL due to model perturbations caused by DP noise added to model updates. Existing studies have considered exclusively noise with persistent root-mean-square amplitude and overlooked an opportunity of adjusting the amplitudes to alleviate the adverse effects of the noise. This paper presents a new DP perturbation mechanism with a time-varying noise amplitude to protect the privacy of FL and retain the capability of adjusting the learning performance. Specifically, we propose a geometric series form for the noise amplitude and reveal analytically the dependence of the series on the number of global aggregations and the (ϵ,δ)-DP requirement. We derive an online refinement of the series to prevent FL from premature convergence resulting from excessive perturbation noise. Another important aspect is an upper bound developed for the loss function of a multi-layer perceptron (MLP) trained by FL running the new DP mechanism. Accordingly, the optimal number of global aggregations is obtained, balancing the learning and privacy. Extensive experiments are conducted using MLP, supporting vector machine, and convolutional neural network models on four public datasets. The contribution of the new DP mechanism to the convergence and accuracy of privacy-preserving FL is corroborated, compared to the state-of-the-art Gaussian noise mechanism with a persistent noise amplitude.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋不凡完成签到,获得积分10
1秒前
2秒前
2秒前
天之道发布了新的文献求助10
3秒前
3秒前
科研通AI6应助zzmyyds采纳,获得10
4秒前
霸气的幼蓉应助qqq采纳,获得10
4秒前
苏z发布了新的文献求助10
4秒前
何hh完成签到,获得积分20
4秒前
简单花花发布了新的文献求助50
5秒前
小马甲应助清爽的晓啸采纳,获得10
6秒前
Yashyi发布了新的文献求助10
6秒前
7秒前
打打应助wzc采纳,获得10
7秒前
耶斯发布了新的文献求助10
8秒前
9秒前
阿星发布了新的文献求助10
9秒前
七色蔷薇完成签到,获得积分10
10秒前
无私怜容发布了新的文献求助10
10秒前
自然凌旋完成签到,获得积分10
12秒前
科研通AI6应助苒苒采纳,获得10
12秒前
12秒前
李健应助芝士采纳,获得30
12秒前
深情安青应助芝士采纳,获得10
12秒前
汉堡包应助芝士采纳,获得10
12秒前
13秒前
13秒前
Akim应助早日毕业采纳,获得10
13秒前
14秒前
szp发布了新的文献求助10
14秒前
小葵完成签到 ,获得积分10
14秒前
ding应助LHT采纳,获得10
15秒前
威龙觉醒完成签到,获得积分20
15秒前
15秒前
自然凌旋发布了新的文献求助10
15秒前
15秒前
16秒前
殷勤的帽子完成签到 ,获得积分10
17秒前
大个应助苒苒采纳,获得10
18秒前
唐宇欣完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396