Amplitude-Varying Perturbation for Balancing Privacy and Utility in Federated Learning

计算机科学 差别隐私 振幅 高斯噪声 人工智能 噪音(视频) 人工神经网络 摄动(天文学) 感知器 机器学习 算法 物理 量子力学 图像(数学)
作者
Xin Yuan,Wei Ni,Ming Ding,Kang Wei,Jun Li,H. Vincent Poor
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 1884-1897 被引量:25
标识
DOI:10.1109/tifs.2023.3258255
摘要

While preserving the privacy of federated learning (FL), differential privacy (DP) inevitably degrades the utility (i.e., accuracy) of FL due to model perturbations caused by DP noise added to model updates. Existing studies have considered exclusively noise with persistent root-mean-square amplitude and overlooked an opportunity of adjusting the amplitudes to alleviate the adverse effects of the noise. This paper presents a new DP perturbation mechanism with a time-varying noise amplitude to protect the privacy of FL and retain the capability of adjusting the learning performance. Specifically, we propose a geometric series form for the noise amplitude and reveal analytically the dependence of the series on the number of global aggregations and the (ϵ,δ)-DP requirement. We derive an online refinement of the series to prevent FL from premature convergence resulting from excessive perturbation noise. Another important aspect is an upper bound developed for the loss function of a multi-layer perceptron (MLP) trained by FL running the new DP mechanism. Accordingly, the optimal number of global aggregations is obtained, balancing the learning and privacy. Extensive experiments are conducted using MLP, supporting vector machine, and convolutional neural network models on four public datasets. The contribution of the new DP mechanism to the convergence and accuracy of privacy-preserving FL is corroborated, compared to the state-of-the-art Gaussian noise mechanism with a persistent noise amplitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彬琪发布了新的文献求助10
2秒前
2秒前
DongWei95完成签到,获得积分10
3秒前
pureivy22完成签到 ,获得积分10
3秒前
5秒前
Hipchengi完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
鸣笛应助晴烟ZYM采纳,获得50
9秒前
麦子发布了新的文献求助10
10秒前
bmn完成签到,获得积分10
11秒前
11秒前
MchemG应助王宏宇采纳,获得10
11秒前
gy完成签到,获得积分10
11秒前
luoshiwen发布了新的文献求助10
11秒前
12秒前
斯人完成签到 ,获得积分10
13秒前
monica发布了新的文献求助10
14秒前
Archy发布了新的文献求助10
14秒前
14秒前
VISSUA发布了新的文献求助10
16秒前
科研通AI5应助yzm采纳,获得10
17秒前
赘婿应助尊敬寒松采纳,获得10
17秒前
111完成签到,获得积分10
17秒前
一颗柠檬完成签到,获得积分10
17秒前
19秒前
自然乌龟完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
隐形曼青应助麦子采纳,获得10
22秒前
monica完成签到,获得积分10
22秒前
23秒前
23秒前
朱z完成签到,获得积分10
24秒前
24秒前
凉兮发布了新的文献求助10
26秒前
尊敬寒松发布了新的文献求助10
28秒前
李爱国应助称心寒松采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629