Amplitude-Varying Perturbation for Balancing Privacy and Utility in Federated Learning

计算机科学 差别隐私 振幅 高斯噪声 人工智能 噪音(视频) 人工神经网络 摄动(天文学) 感知器 机器学习 算法 物理 量子力学 图像(数学)
作者
Xin Yuan,Wei Ni,Ming Ding,Kang Wei,Jun Li,H. Vincent Poor
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 1884-1897 被引量:25
标识
DOI:10.1109/tifs.2023.3258255
摘要

While preserving the privacy of federated learning (FL), differential privacy (DP) inevitably degrades the utility (i.e., accuracy) of FL due to model perturbations caused by DP noise added to model updates. Existing studies have considered exclusively noise with persistent root-mean-square amplitude and overlooked an opportunity of adjusting the amplitudes to alleviate the adverse effects of the noise. This paper presents a new DP perturbation mechanism with a time-varying noise amplitude to protect the privacy of FL and retain the capability of adjusting the learning performance. Specifically, we propose a geometric series form for the noise amplitude and reveal analytically the dependence of the series on the number of global aggregations and the (ϵ,δ)-DP requirement. We derive an online refinement of the series to prevent FL from premature convergence resulting from excessive perturbation noise. Another important aspect is an upper bound developed for the loss function of a multi-layer perceptron (MLP) trained by FL running the new DP mechanism. Accordingly, the optimal number of global aggregations is obtained, balancing the learning and privacy. Extensive experiments are conducted using MLP, supporting vector machine, and convolutional neural network models on four public datasets. The contribution of the new DP mechanism to the convergence and accuracy of privacy-preserving FL is corroborated, compared to the state-of-the-art Gaussian noise mechanism with a persistent noise amplitude.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
lwg发布了新的文献求助10
2秒前
2秒前
甜甜亦丝发布了新的文献求助10
2秒前
yaohuici发布了新的文献求助10
4秒前
4秒前
Deng发布了新的文献求助10
4秒前
英俊的铭应助是小袁呀采纳,获得10
5秒前
英姑应助alex采纳,获得10
6秒前
faye发布了新的文献求助10
8秒前
Ava应助ndsiu采纳,获得10
8秒前
yu发布了新的文献求助10
9秒前
9秒前
9秒前
KAIDOHARA完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助30
10秒前
xzxhh完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
小雨关注了科研通微信公众号
12秒前
xin发布了新的文献求助10
13秒前
14秒前
朴实雨竹完成签到,获得积分10
14秒前
从容曼文发布了新的文献求助10
14秒前
安详的未来完成签到,获得积分10
14秒前
科研通AI6应助读书的时候采纳,获得10
15秒前
15秒前
15秒前
16秒前
江上发布了新的文献求助10
16秒前
顾矜应助益生菌小哥采纳,获得10
16秒前
louis dai发布了新的文献求助10
16秒前
xzxhh关注了科研通微信公众号
16秒前
Akim应助外向梦山采纳,获得10
16秒前
18秒前
布丁完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720320
求助须知:如何正确求助?哪些是违规求助? 5259567
关于积分的说明 15290807
捐赠科研通 4869734
什么是DOI,文献DOI怎么找? 2614988
邀请新用户注册赠送积分活动 1564964
关于科研通互助平台的介绍 1522137