An adaptive identification method of abnormal data in wind and solar power stations

聚类分析 鉴定(生物学) 数据库扫描 计算机科学 风力发电 数据挖掘 太阳能 稳健性(进化) 水准点(测量) 功率(物理) 工程类 人工智能 地理 植物 物理 量子力学 电气工程 生物 生物化学 树冠聚类算法 相关聚类 化学 大地测量学 基因
作者
Han Wang,Ning Zhang,Ershun Du,Jie Yan,Shuang Han,Nan Li,Hongxia Li,Yongqian Liu
出处
期刊:Renewable Energy [Elsevier]
卷期号:208: 76-93 被引量:6
标识
DOI:10.1016/j.renene.2023.03.081
摘要

Accurate and credible operation data sets of wind and solar power stations are the basis of many research works. However, such data sets often contain abnormal data due to failure, maintenance, energy curtailment, etc. The existing identification methods fail to consider the operating characteristics of power stations and the forms of abnormal data, resulting in low identification ability. Therefore, an adaptive identification method of abnormal data (AIMAD) in the wind and solar power stations is proposed in this paper, including the bidirectional one-sided quartile method and double DBSCAN method to deal with unevenly distributed abnormal data; the improved K-means clustering method based on the distance between the cluster center and benchmark power curve to process the abnormal data that are densely accumulated and closely connected with normal data in the power scatter diagram. The proposed method can adjust adaptively according to the forms of abnormal data to realize accurate identification and has strong robustness for power stations. The operation data of 30 wind farms and 8 solar plants in China are taken as examples to verify the effectiveness and superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助yu采纳,获得30
1秒前
1秒前
1秒前
2秒前
可耐的冰巧完成签到,获得积分10
3秒前
沧海一声笑完成签到,获得积分10
4秒前
丘比特应助萨尔莫斯采纳,获得10
5秒前
无极微光应助小宋宋采纳,获得20
6秒前
恶毒的婆婆完成签到,获得积分10
7秒前
7秒前
8秒前
11秒前
善学以致用应助yii采纳,获得10
11秒前
桐桐应助tracer526采纳,获得10
12秒前
13秒前
Lny发布了新的文献求助20
13秒前
熊熊甩锅侠完成签到,获得积分10
15秒前
熟睡的妻子完成签到,获得积分10
15秒前
15秒前
17秒前
Mao发布了新的文献求助10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
浮游应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
yu发布了新的文献求助30
19秒前
Zewen_Li应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得30
19秒前
蓝天应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
19秒前
浮游应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963