A dynamic dual-population co-evolution multi-objective evolutionary algorithm for constrained multi-objective optimization problems

差异进化 对偶(语法数字) 进化算法 数学优化 计算机科学 趋同(经济学) 人口 进化策略 进化计算 最优化问题 算法 数学 人口学 经济 社会学 艺术 文学类 经济增长
作者
Xiangping Kong,Yongkuan Yang,Zhisheng Lv,Zhao Jing,Rong Fu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:141: 110311-110311
标识
DOI:10.1016/j.asoc.2023.110311
摘要

Many multi-objective evolutionary algorithms are proposed to handle constrained multi-objective optimization problems. Nevertheless, they often fail to appropriately balance feasibility, convergence and diversity of the population. This paper proposed a dynamic dual-population co-evolution multi-objective evolutionary algorithm (DDCMEA) to solve this issue. In DDCMEA, a dynamic dual-population co-evolution strategy is employed to balance the convergence and the feasibility by dynamically adjusting the offspring number of the two populations. In the early stage of evolution, the algorithm mainly focuses on the convergence and more offspring of the first population are generated. In the late stage of evolution, the algorithm mainly focuses on the feasibility and more offspring of the second population are generated. Finally, feasible solutions with good convergence could be obtained. To further enhance the diversity of the offspring and obtain feasible solutions with a wide spread of distribution, the evolution operators of the genetic algorithm and the differential evolution are chosen as the search engines for the first population and the second population, respectively. The performance of DDCMEA is further tested through thirty-one bench-mark test problems and two real-world problems in comparison with other five state-of-the-art algorithms. The results show the proposed algorithm DDCMEA achieves competitive performance when handling constrained multi-objective optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助宋禄达采纳,获得10
刚刚
1秒前
火星上牛青完成签到,获得积分10
1秒前
2秒前
罗莹发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
hewd3完成签到,获得积分20
4秒前
5秒前
站住辣条发布了新的文献求助10
5秒前
赘婿应助轻松的元柏采纳,获得10
6秒前
6秒前
6秒前
zizziai发布了新的文献求助10
7秒前
hewd3发布了新的文献求助10
7秒前
mhwu718发布了新的文献求助10
8秒前
好蓝发布了新的文献求助10
8秒前
乐乐发布了新的文献求助10
8秒前
9秒前
顾矜应助陈大仙采纳,获得10
9秒前
星辰大海应助why采纳,获得10
9秒前
Hyh_完成签到 ,获得积分10
10秒前
10秒前
小颖子发布了新的文献求助10
10秒前
在水一方应助串串采纳,获得10
10秒前
破锋天下发布了新的文献求助30
10秒前
10秒前
缓慢的冬云完成签到,获得积分0
11秒前
百川发布了新的文献求助10
11秒前
燕燕完成签到 ,获得积分10
12秒前
Mystic完成签到,获得积分10
12秒前
12秒前
12秒前
李佳唯发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
两只老虎爱跳舞完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400477
求助须知:如何正确求助?哪些是违规求助? 4519746
关于积分的说明 14076482
捐赠科研通 4432591
什么是DOI,文献DOI怎么找? 2433726
邀请新用户注册赠送积分活动 1425955
关于科研通互助平台的介绍 1404638