A dynamic dual-population co-evolution multi-objective evolutionary algorithm for constrained multi-objective optimization problems

差异进化 对偶(语法数字) 进化算法 数学优化 计算机科学 趋同(经济学) 人口 进化策略 进化计算 最优化问题 算法 数学 经济增长 经济 社会学 文学类 人口学 艺术
作者
Xiangping Kong,Yongkuan Yang,Zhisheng Lv,Zhao Jing,Rong Fu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:141: 110311-110311
标识
DOI:10.1016/j.asoc.2023.110311
摘要

Many multi-objective evolutionary algorithms are proposed to handle constrained multi-objective optimization problems. Nevertheless, they often fail to appropriately balance feasibility, convergence and diversity of the population. This paper proposed a dynamic dual-population co-evolution multi-objective evolutionary algorithm (DDCMEA) to solve this issue. In DDCMEA, a dynamic dual-population co-evolution strategy is employed to balance the convergence and the feasibility by dynamically adjusting the offspring number of the two populations. In the early stage of evolution, the algorithm mainly focuses on the convergence and more offspring of the first population are generated. In the late stage of evolution, the algorithm mainly focuses on the feasibility and more offspring of the second population are generated. Finally, feasible solutions with good convergence could be obtained. To further enhance the diversity of the offspring and obtain feasible solutions with a wide spread of distribution, the evolution operators of the genetic algorithm and the differential evolution are chosen as the search engines for the first population and the second population, respectively. The performance of DDCMEA is further tested through thirty-one bench-mark test problems and two real-world problems in comparison with other five state-of-the-art algorithms. The results show the proposed algorithm DDCMEA achieves competitive performance when handling constrained multi-objective optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助对掏大王采纳,获得10
刚刚
搜集达人应助对掏大王采纳,获得10
刚刚
大个应助lmr采纳,获得10
刚刚
风中的凝丹完成签到,获得积分10
刚刚
刚刚
1秒前
Akim应助Ztx采纳,获得10
1秒前
无名应助鲤鱼迎蕾采纳,获得20
1秒前
郝誉发布了新的文献求助10
1秒前
1秒前
1秒前
挽风发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
元谷雪发布了新的文献求助10
4秒前
wanci应助清脆惜寒采纳,获得10
5秒前
沉默鸵鸟关注了科研通微信公众号
5秒前
QianZ发布了新的文献求助30
5秒前
7秒前
老兵完成签到,获得积分10
7秒前
平常访旋发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
风清扬发布了新的文献求助10
9秒前
yourenpkma123完成签到,获得积分10
9秒前
科研通AI2S应助张弘民采纳,获得10
9秒前
xinxin完成签到,获得积分10
10秒前
华仔应助舒心的梦松采纳,获得10
10秒前
10秒前
11秒前
鳗鱼语薇发布了新的文献求助10
11秒前
破晓星完成签到,获得积分10
11秒前
12秒前
不要温水煮青蛙关注了科研通微信公众号
13秒前
fhbsdufh发布了新的文献求助10
13秒前
yourenpkma123发布了新的文献求助10
14秒前
Ava应助负责玉米采纳,获得30
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277