A dynamic dual-population co-evolution multi-objective evolutionary algorithm for constrained multi-objective optimization problems

差异进化 对偶(语法数字) 进化算法 数学优化 计算机科学 趋同(经济学) 人口 进化策略 进化计算 最优化问题 算法 数学 人口学 经济 社会学 艺术 文学类 经济增长
作者
Xiangping Kong,Yongkuan Yang,Zhisheng Lv,Zhao Jing,Rong Fu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:141: 110311-110311
标识
DOI:10.1016/j.asoc.2023.110311
摘要

Many multi-objective evolutionary algorithms are proposed to handle constrained multi-objective optimization problems. Nevertheless, they often fail to appropriately balance feasibility, convergence and diversity of the population. This paper proposed a dynamic dual-population co-evolution multi-objective evolutionary algorithm (DDCMEA) to solve this issue. In DDCMEA, a dynamic dual-population co-evolution strategy is employed to balance the convergence and the feasibility by dynamically adjusting the offspring number of the two populations. In the early stage of evolution, the algorithm mainly focuses on the convergence and more offspring of the first population are generated. In the late stage of evolution, the algorithm mainly focuses on the feasibility and more offspring of the second population are generated. Finally, feasible solutions with good convergence could be obtained. To further enhance the diversity of the offspring and obtain feasible solutions with a wide spread of distribution, the evolution operators of the genetic algorithm and the differential evolution are chosen as the search engines for the first population and the second population, respectively. The performance of DDCMEA is further tested through thirty-one bench-mark test problems and two real-world problems in comparison with other five state-of-the-art algorithms. The results show the proposed algorithm DDCMEA achieves competitive performance when handling constrained multi-objective optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青椒应助和谐的忆寒采纳,获得50
刚刚
1秒前
幽默曼冬完成签到,获得积分10
2秒前
NK001完成签到,获得积分10
2秒前
热水泡jio完成签到,获得积分10
2秒前
光亮青筠发布了新的文献求助10
3秒前
dudu发布了新的文献求助10
4秒前
甲乙丙丁完成签到,获得积分10
4秒前
jiao完成签到,获得积分10
4秒前
gali完成签到,获得积分10
5秒前
翊然甜周完成签到,获得积分10
5秒前
烟花应助gxf123456采纳,获得10
6秒前
7秒前
科目三应助帆帆帆采纳,获得10
7秒前
lst完成签到,获得积分10
7秒前
jack1511完成签到,获得积分10
7秒前
7秒前
开朗念薇完成签到,获得积分20
7秒前
Gakay完成签到,获得积分10
8秒前
yuhang完成签到,获得积分10
9秒前
xxxx发布了新的文献求助10
10秒前
10秒前
tut完成签到 ,获得积分10
11秒前
coolru完成签到,获得积分10
11秒前
满家归寻发布了新的文献求助10
11秒前
11秒前
Riggle G完成签到,获得积分10
12秒前
日月小完成签到,获得积分10
12秒前
vv1223完成签到,获得积分10
12秒前
未明的感觉完成签到,获得积分10
12秒前
Mint完成签到 ,获得积分10
13秒前
13秒前
小明完成签到,获得积分10
13秒前
HH完成签到,获得积分10
14秒前
MouLi完成签到,获得积分10
14秒前
酷波er应助Jere采纳,获得10
14秒前
清风完成签到 ,获得积分10
15秒前
鲸鱼打滚完成签到 ,获得积分10
15秒前
暴躁的语堂完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568452
求助须知:如何正确求助?哪些是违规求助? 4653069
关于积分的说明 14703693
捐赠科研通 4594883
什么是DOI,文献DOI怎么找? 2521327
邀请新用户注册赠送积分活动 1492973
关于科研通互助平台的介绍 1463778