Multi-UAV Coverage Path Planning: A Distributed Online Cooperation Method

计算机科学 任务(项目管理) 运动规划 实时计算 路径(计算) 分布式计算 平面图(考古学) 国家(计算机科学) 任务分析 人工智能 计算机网络 工程类 算法 机器人 系统工程 历史 考古
作者
Wenjian Hu,Yao Yu,Shumei Liu,Changyang She,Lei Guo,Branka Vucetic,Yonghui Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (9): 11727-11740 被引量:40
标识
DOI:10.1109/tvt.2023.3266817
摘要

Coverage path planning (CPP) for unmanned aerial vehicles (UAVs) plays a significant role in intelligent distributed surveillance systems. However, due to poor cooperation, most existing CPP methods may cause strongly overlapped trajectories, missing areas, or even collisions in uncertain and complex environments, leading to long task completion time and low coverage efficiency. To this end, in this paper we propose a novel multi-UAV distributed online cooperation (MDOC) CPP method that aims to minimize task completion time. Moreover, this method allows UAVs to quickly respond to unknown obstacles and complex emergencies, such as UAV breakdown or communication interruption. To establish close cooperation between UAVs, we propose an efficient environmental information map (EI-map) fusion technique that enables them to obtain global exploration in real-time in a cooperative manner. Then we innovatively develop a distributed cooperative deep Q-learning (DCDQN) algorithm to obtain UAVs' coverage paths online that are determined by minimizing task time and avoiding overlaps, missing areas, and collisions. Specifically, attributing to the fused EI-map, we expand the state space of DCDQN to collect sufficient observations and design a novel cooperative learning pattern to efficiently plan the path for global optimization. Simulation results show that our method outperforms the state-of-the-art in task completion time and coverage efficiency, especially in uncertain and complex environments. In addition, we validate that our method can efficiently complete full coverage even in emergencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助qqq159753采纳,获得10
刚刚
科研果完成签到,获得积分10
刚刚
韩豆乐发布了新的文献求助10
1秒前
1秒前
2秒前
阿白完成签到,获得积分10
2秒前
欣欣向荣完成签到,获得积分10
3秒前
3秒前
小曲同学完成签到,获得积分10
4秒前
小文子发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
tong完成签到,获得积分10
5秒前
7秒前
7秒前
Elaine应助maofeng采纳,获得10
7秒前
7秒前
完美世界应助Zhang采纳,获得10
7秒前
9秒前
DKY驳回了小蘑菇应助
9秒前
小土豆完成签到,获得积分10
9秒前
韩豆乐完成签到,获得积分10
10秒前
10秒前
Jeffny完成签到 ,获得积分10
11秒前
隔壁老璇发布了新的文献求助10
12秒前
13秒前
14秒前
清璃发布了新的文献求助10
14秒前
14秒前
14秒前
蔚然无尽蓝完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
开朗的蚂蚁完成签到,获得积分10
16秒前
Zx_1993应助叉烧饭采纳,获得10
17秒前
18秒前
Barret发布了新的文献求助10
18秒前
meng完成签到 ,获得积分10
18秒前
12366666发布了新的文献求助10
19秒前
lily2333完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265