亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-UAV Coverage Path Planning: A Distributed Online Cooperation Method

计算机科学 任务(项目管理) 运动规划 实时计算 路径(计算) 分布式计算 平面图(考古学) 国家(计算机科学) 任务分析 人工智能 计算机网络 工程类 算法 机器人 系统工程 考古 历史
作者
Wenjian Hu,Yao Yu,Shumei Liu,Changyang She,Lei Guo,Branka Vucetic,Yonghui Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (9): 11727-11740 被引量:25
标识
DOI:10.1109/tvt.2023.3266817
摘要

Coverage path planning (CPP) for unmanned aerial vehicles (UAVs) plays a significant role in intelligent distributed surveillance systems. However, due to poor cooperation, most existing CPP methods may cause strongly overlapped trajectories, missing areas, or even collisions in uncertain and complex environments, leading to long task completion time and low coverage efficiency. To this end, in this paper we propose a novel multi-UAV distributed online cooperation (MDOC) CPP method that aims to minimize task completion time. Moreover, this method allows UAVs to quickly respond to unknown obstacles and complex emergencies, such as UAV breakdown or communication interruption. To establish close cooperation between UAVs, we propose an efficient environmental information map (EI-map) fusion technique that enables them to obtain global exploration in real-time in a cooperative manner. Then we innovatively develop a distributed cooperative deep Q-learning (DCDQN) algorithm to obtain UAVs' coverage paths online that are determined by minimizing task time and avoiding overlaps, missing areas, and collisions. Specifically, attributing to the fused EI-map, we expand the state space of DCDQN to collect sufficient observations and design a novel cooperative learning pattern to efficiently plan the path for global optimization. Simulation results show that our method outperforms the state-of-the-art in task completion time and coverage efficiency, especially in uncertain and complex environments. In addition, we validate that our method can efficiently complete full coverage even in emergencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
8秒前
量子星尘发布了新的文献求助10
22秒前
zzzllove完成签到 ,获得积分10
1分钟前
1分钟前
英勇小伙完成签到,获得积分10
1分钟前
1分钟前
喊我彩彩发布了新的文献求助10
1分钟前
1分钟前
小玉米完成签到 ,获得积分10
1分钟前
喊我彩彩完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CING发布了新的文献求助10
1分钟前
1分钟前
尊敬的丹烟完成签到 ,获得积分10
2分钟前
wwww完成签到 ,获得积分10
2分钟前
2分钟前
CING完成签到,获得积分10
2分钟前
clp完成签到,获得积分10
2分钟前
3分钟前
shirley要奋斗完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
jeronimo完成签到,获得积分10
3分钟前
yhgz完成签到,获得积分10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
葉鳳怡完成签到 ,获得积分10
4分钟前
4分钟前
飘逸晓凡完成签到,获得积分20
4分钟前
玄音完成签到,获得积分10
4分钟前
check003完成签到,获得积分10
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
曾经不言完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
爱笑的醉卉完成签到,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128617
捐赠科研通 3238269
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069