Multi-UAV Coverage Path Planning: A Distributed Online Cooperation Method

计算机科学 任务(项目管理) 运动规划 实时计算 路径(计算) 分布式计算 平面图(考古学) 国家(计算机科学) 任务分析 人工智能 计算机网络 工程类 算法 机器人 系统工程 历史 考古
作者
Wenjian Hu,Yao Yu,Shumei Liu,Changyang She,Lei Guo,Branka Vucetic,Yonghui Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (9): 11727-11740 被引量:40
标识
DOI:10.1109/tvt.2023.3266817
摘要

Coverage path planning (CPP) for unmanned aerial vehicles (UAVs) plays a significant role in intelligent distributed surveillance systems. However, due to poor cooperation, most existing CPP methods may cause strongly overlapped trajectories, missing areas, or even collisions in uncertain and complex environments, leading to long task completion time and low coverage efficiency. To this end, in this paper we propose a novel multi-UAV distributed online cooperation (MDOC) CPP method that aims to minimize task completion time. Moreover, this method allows UAVs to quickly respond to unknown obstacles and complex emergencies, such as UAV breakdown or communication interruption. To establish close cooperation between UAVs, we propose an efficient environmental information map (EI-map) fusion technique that enables them to obtain global exploration in real-time in a cooperative manner. Then we innovatively develop a distributed cooperative deep Q-learning (DCDQN) algorithm to obtain UAVs' coverage paths online that are determined by minimizing task time and avoiding overlaps, missing areas, and collisions. Specifically, attributing to the fused EI-map, we expand the state space of DCDQN to collect sufficient observations and design a novel cooperative learning pattern to efficiently plan the path for global optimization. Simulation results show that our method outperforms the state-of-the-art in task completion time and coverage efficiency, especially in uncertain and complex environments. In addition, we validate that our method can efficiently complete full coverage even in emergencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vincent完成签到,获得积分10
1秒前
式微发布了新的文献求助10
1秒前
1秒前
2秒前
大眼的平松完成签到,获得积分10
2秒前
2秒前
高贵云朵发布了新的文献求助30
3秒前
knight0524完成签到,获得积分10
4秒前
千纸鹤完成签到 ,获得积分10
4秒前
lzy关闭了lzy文献求助
4秒前
4秒前
5秒前
科研通AI6应助闪闪大米采纳,获得10
5秒前
5秒前
7012发布了新的文献求助10
6秒前
璎丸子完成签到,获得积分10
7秒前
7秒前
Sue完成签到,获得积分10
8秒前
knight0524发布了新的文献求助10
9秒前
胡图图完成签到,获得积分20
9秒前
yx发布了新的文献求助10
9秒前
菜虫虫完成签到,获得积分10
11秒前
逆鳞完成签到,获得积分10
12秒前
慕青应助积极的邴采纳,获得10
13秒前
wentzz完成签到,获得积分20
13秒前
星辰大海应助歪比巴卜采纳,获得10
13秒前
13秒前
zho应助Jason采纳,获得10
15秒前
酷波er应助asasd采纳,获得10
16秒前
监督導部完成签到,获得积分10
16秒前
16秒前
贼吖完成签到 ,获得积分10
16秒前
18秒前
我不爱池鱼应助yg采纳,获得10
18秒前
在水一方应助yx采纳,获得10
19秒前
胡图图发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
一兜哇完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589645
求助须知:如何正确求助?哪些是违规求助? 4674252
关于积分的说明 14792825
捐赠科研通 4628743
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501019
关于科研通互助平台的介绍 1468472