清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Editorial for “Scanner‐Independent MyoMapNet for Accelerated Cardiac MRI T1 Mapping Across Vendors and Field Strengths”

引用 图书馆学 计算机科学 磁共振成像 医学 医学物理学 放射科
作者
Lavanya Umapathy
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (1): 190-191
标识
DOI:10.1002/jmri.28738
摘要

Journal of Magnetic Resonance ImagingEarly View Editorial Editorial for “Scanner-Independent MyoMapNet for Accelerated Cardiac MRI T1 Mapping Across Vendors and Field Strengths” Lavanya Umapathy PhD, Corresponding Author Lavanya Umapathy PhD [email protected] orcid.org/0000-0002-7224-0930 Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA Department of Medical Imaging, University of Arizona, Tucson, Arizona, USASearch for more papers by this author Lavanya Umapathy PhD, Corresponding Author Lavanya Umapathy PhD [email protected] orcid.org/0000-0002-7224-0930 Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA Department of Medical Imaging, University of Arizona, Tucson, Arizona, USASearch for more papers by this author First published: 19 April 2023 https://doi.org/10.1002/jmri.28738 Evidence Level: 5 Technical Efficacy: Stage 2 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL No abstract is available for this article. References 1Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: A Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013; 15(1):92. https://doi.org/10.1186/1532-429X-15-92. 2Kellman P, Hansen MS. T1-mapping in the heart: Accuracy and precision. J Cardiovasc Magn Reson 2014; 16(1):2. https://doi.org/10.1186/1532-429X-16-2. 3Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 mapping: Basic techniques and clinical applications. JACC Cardiovasc Imaging 2016; 9(1): 67- 81. https://doi.org/10.1016/j.jcmg.2015.11.005. 4Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004; 52(1): 141- 146. 5Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010; 12:69. https://doi.org/10.1186/1532-429X-12-69. 6Guo R, El-Rewaidy H, Assana S, et al. Accelerated cardiac T1 mapping in four heartbeats with inline MyoMapNet: A deep learning-based T1 estimation approach. J Cardiovasc Magn Reson 2022; 24: 6. https://doi.org/10.1186/s12968-021-00834-0. 7Le JV, Mendes JK, McKibben N, et al. Accelerated cardiac T1 mapping with recurrent networks and cyclic, model-based loss. Med Phys 2022; 49(11): 6986- 7000. https://doi.org/10.1002/mp.15801. 8Amyar A, Fahmy AS, Guo R, et al. Scanner-independent MyoMapNet for accelerated cardiac MRI T1 mapping across vendors and field strengths. J Magn Reson Imaging 2023; Epub ahead of print. 9Bento M, Fantini I, Park J, Rittner L, Frayne R. Deep learning in large and multi-site structural brain MR imaging datasets. Front Neuroinform 2022; 15:805669. https://doi.org/10.3389/fninf.2021.805669. 10Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on Machine Learning, PMLR; 2015, p. 1180- 1189. Early ViewOnline Version of Record before inclusion in an issue ReferencesRelatedInformation

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海豚完成签到 ,获得积分10
12秒前
22秒前
我独舞完成签到 ,获得积分10
25秒前
30秒前
likw23完成签到 ,获得积分10
35秒前
emxzemxz完成签到 ,获得积分10
35秒前
啦啦啦完成签到 ,获得积分10
39秒前
44秒前
neal仰望发布了新的文献求助10
47秒前
51秒前
neal仰望完成签到,获得积分10
56秒前
dd完成签到,获得积分20
1分钟前
辛勤幻梅完成签到,获得积分10
1分钟前
胡图图完成签到 ,获得积分10
1分钟前
yupingqin完成签到 ,获得积分10
1分钟前
AXLL完成签到 ,获得积分10
1分钟前
科研菜鸡完成签到 ,获得积分10
1分钟前
开心夏旋完成签到 ,获得积分10
1分钟前
无一完成签到 ,获得积分10
1分钟前
直率纹完成签到 ,获得积分10
1分钟前
乐乐应助Liumingyu采纳,获得10
1分钟前
Liumingyu完成签到,获得积分10
1分钟前
1分钟前
Liumingyu发布了新的文献求助10
2分钟前
平凡世界完成签到 ,获得积分10
2分钟前
整齐的惮完成签到 ,获得积分10
2分钟前
穆一手完成签到 ,获得积分10
2分钟前
Ray完成签到 ,获得积分10
2分钟前
完美世界应助dd采纳,获得10
2分钟前
oleskarabach完成签到,获得积分20
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
文耀海发布了新的文献求助10
2分钟前
小西完成签到 ,获得积分10
2分钟前
文耀海完成签到,获得积分10
2分钟前
完美世界应助xun采纳,获得10
2分钟前
3分钟前
xianyaoz完成签到 ,获得积分10
3分钟前
xun发布了新的文献求助10
3分钟前
大个应助xun采纳,获得10
3分钟前
xixi很困完成签到 ,获得积分10
3分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793684
关于积分的说明 7807147
捐赠科研通 2450016
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350