粒子群优化
表面等离子共振
计算机科学
功勋
灵敏度(控制系统)
等离子体子
集合(抽象数据类型)
算法
材料科学
电子工程
纳米技术
光电子学
工程类
纳米颗粒
计算机视觉
程序设计语言
作者
Kushagra Rastogi,Anuj K. Sharma,Yogendra Kumar Prajapati
出处
期刊:Applied Physics A
[Springer Science+Business Media]
日期:2023-04-16
卷期号:129 (5)
被引量:8
标识
DOI:10.1007/s00339-023-06630-0
摘要
This work illustrates the viability of optics ideas using a machine learning (ML) technique to choose the optimal SPR sensor for a particular set of structural parameters. Particle swarm optimization (PSO) algorithm is utilized in conjunction with an ML model to design a tunable surface plasmonic resonance (SPR) sensor. A trained ML model is applied to the PSO algorithm to develop the SPR sensor with the desired sensing performance. Using a learned ML model to forecast sensor performance rather than sophisticated electromagnetic calculation techniques allows the PSO algorithm to optimize solutions faster with four orders of magnitude. This composite algorithm's implementation enabled us to rapidly and precisely create an SPR sensor with a sensitivity of 68.754 °/RIU and having an impressive figure of merit of 100. We anticipate that the proposed effective and precise method will pave the way for the future development of plasmonic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI