Predictive Control of a Heaving Compensation System Based on Machine Learning Prediction Algorithm

模型预测控制 前馈 补偿(心理学) 有效载荷(计算) 人工神经网络 工程类 计算机科学 控制理论(社会学) 人工智能 控制工程 控制(管理) 心理学 计算机网络 网络数据包 精神分析
作者
Lifen Hu,Ming Zhang,Zhiming Yuan,Huizhen Zheng,Wenbin Lyu
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 821-821 被引量:1
标识
DOI:10.3390/jmse11040821
摘要

Floating structures have become a major part of offshore structure communities as offshore engineering moves from shallow waters to deeper ones. Floating installation ships or platforms are widely used in these engineering operations. Unexpected wave-induced motions affect floating structures, especially in harsh sea conditions. Horizontal motions on the sea surface can be offset by a dynamic positioning system, and heave motions can be controlled by a heave compensation system. Active heave compensation (AHC) systems are applied to control vertical heave motions and improve safety and efficiency. Predictive control based on machine learning prediction algorithms further improves the performance of active heave compensation control systems. This study proposes a predictive control strategy for an active heave compensation system with a machine learning prediction algorithm to minimise the heave motion of crane payload. A predictive active compensation model is presented to verify the proposed predictive control strategy, and proportion–integration–differentiation control with predictive control is adopted. The reliability of back propagation neural network (BPNN) and long short-term memory recurrent neural network (LSTM RNN) prediction algorithms is proven. The influence of the predictive error on compensation performance is analysed by comparing predictive feedforward cases with actual-data feedforward cases. Predictive feedforward control with regular and irregular wave conditions is discussed, and the possible strategies are examined. After implementing the proposed predictive control strategy based on a machine learning algorithm in an active heave compensation system, the heave motion of the payload is reduced considerably. This investigation is expected to contribute to the motion control strategy of floating structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椰子糖完成签到,获得积分10
1秒前
Lucia发布了新的文献求助30
4秒前
james完成签到,获得积分10
5秒前
净禅完成签到 ,获得积分10
5秒前
9秒前
9秒前
Szhou完成签到,获得积分10
12秒前
12秒前
13秒前
astalavista发布了新的文献求助10
14秒前
桂桂给桂桂的求助进行了留言
15秒前
16秒前
程新亮完成签到 ,获得积分10
16秒前
18秒前
Lucas应助知性的采珊采纳,获得10
18秒前
astalavista完成签到,获得积分10
18秒前
ch发布了新的文献求助10
19秒前
20秒前
氨基丁酸发布了新的文献求助10
20秒前
ding应助标致的耳机采纳,获得10
21秒前
sh完成签到,获得积分10
21秒前
22秒前
wanci应助nekoleaf采纳,获得10
22秒前
mj发布了新的文献求助10
22秒前
爆米花应助糯米糍采纳,获得10
23秒前
科研通AI5应助糯米糍采纳,获得10
23秒前
小二郎应助糯米糍采纳,获得10
23秒前
李健的小迷弟应助糯米糍采纳,获得10
23秒前
李健的小迷弟应助糯米糍采纳,获得10
23秒前
拉长的映阳应助糯米糍采纳,获得10
23秒前
科研轮回完成签到,获得积分10
23秒前
lv应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
Bai应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得20
24秒前
图图应助科研通管家采纳,获得30
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
无花果应助科研通管家采纳,获得10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782