Toward personalized care for insomnia in the US Army: development of a machine-learning model to predict response to pharmacotherapy

医学 失眠症 药方 接收机工作特性 样本量测定 原发性失眠 物理疗法 睡眠障碍 精神科 内科学 统计 数学 药理学
作者
Frances H. Gabbay,Gary H. Wynn,Matthew W. Georg,Sarah M. Gildea,Chris Kennedy,Andrew J. King,Nancy A. Sampson,Robert J. Ursano,Murray B. Stein,James Wagner,Ronald C. Kessler,Vincent F. Capaldi
出处
期刊:Journal of Clinical Sleep Medicine [American Academy of Sleep Medicine]
卷期号:19 (8): 1399-1410
标识
DOI:10.5664/jcsm.10574
摘要

Although many military personnel with insomnia are treated with prescription medication, little reliable guidance exists to identify patients most likely to respond. As a first step toward personalized care for insomnia, we present results of a machine-learning model to predict response to insomnia medication.The sample comprised n = 4,738 nondeployed US Army soldiers treated with insomnia medication and followed 6-12 weeks after initiating treatment. All patients had moderate-severe baseline scores on the Insomnia Severity Index (ISI) and completed 1 or more follow-up ISIs 6-12 weeks after baseline. An ensemble machine-learning model was developed in a 70% training sample to predict clinically significant ISI improvement, defined as reduction of at least 2 standard deviations on the baseline ISI distribution. Predictors included a wide range of military administrative and baseline clinical variables. Model accuracy was evaluated in the remaining 30% test sample.21.3% of patients had clinically significant ISI improvement. Model test sample area under the receiver operating characteristic curve (standard error) was 0.63 (0.02). Among the 30% of patients with the highest predicted probabilities of improvement, 32.5.% had clinically significant symptom improvement vs 16.6% in the 70% sample predicted to be least likely to improve (χ21 = 37.1, P < .001). More than 75% of prediction accuracy was due to 10 variables, the most important of which was baseline insomnia severity.Pending replication, the model could be used as part of a patient-centered decision-making process for insomnia treatment, but parallel models will be needed for alternative treatments before such a system is of optimal value.Gabbay FH, Wynn GH, Georg MW, et al. Toward personalized care for insomnia in the US Army: development of a machine-learning model to predict response to pharmacotherapy. J Clin Sleep Med. 2023;19(8):1399-1410.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
进步完成签到,获得积分10
1秒前
周周完成签到,获得积分10
1秒前
ossantu发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助10
2秒前
4737发布了新的文献求助10
2秒前
小包子完成签到,获得积分10
2秒前
小棠完成签到 ,获得积分10
2秒前
陈永伟完成签到,获得积分10
3秒前
Matrix完成签到,获得积分10
3秒前
丁泓骄完成签到,获得积分10
3秒前
4秒前
alexisgood发布了新的文献求助10
4秒前
专一的鸡翅完成签到 ,获得积分10
4秒前
GSGSG完成签到,获得积分20
4秒前
科研通AI2S应助huyz采纳,获得10
5秒前
cc完成签到,获得积分10
5秒前
四然发布了新的文献求助10
5秒前
丸子发布了新的文献求助10
5秒前
往往小陈完成签到,获得积分10
5秒前
请叫我风吹麦浪应助YBR采纳,获得10
5秒前
顾晨发布了新的文献求助10
5秒前
洁净的士晋完成签到,获得积分10
6秒前
丁泓骄发布了新的文献求助10
6秒前
小_n完成签到,获得积分10
7秒前
童谣发布了新的文献求助10
7秒前
Hangerli完成签到,获得积分20
8秒前
大胖完成签到,获得积分10
8秒前
不会游泳完成签到,获得积分10
8秒前
研友_nPb9e8发布了新的文献求助10
8秒前
9秒前
SYLH应助myy采纳,获得10
9秒前
小二郎应助cmuwinni采纳,获得10
9秒前
打打应助shuicaoxi采纳,获得10
10秒前
隐形曼青应助姜姜姜采纳,获得20
10秒前
隔壁小曾发布了新的文献求助10
11秒前
搜集达人应助Jungel采纳,获得10
11秒前
欧阳香彤完成签到,获得积分10
11秒前
FLZLC发布了新的文献求助10
12秒前
guoguo完成签到,获得积分10
12秒前
王鑫发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044