清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Toward personalized care for insomnia in the US Army: development of a machine-learning model to predict response to pharmacotherapy

医学 失眠症 药方 接收机工作特性 样本量测定 原发性失眠 物理疗法 睡眠障碍 精神科 内科学 统计 数学 药理学
作者
Frances H. Gabbay,Gary H. Wynn,Matthew W. Georg,Sarah M. Gildea,Chris Kennedy,Andrew J. King,Nancy A. Sampson,Robert J. Ursano,Murray B. Stein,James Wagner,Ronald C. Kessler,Vincent F. Capaldi
出处
期刊:Journal of Clinical Sleep Medicine [American Academy of Sleep Medicine]
卷期号:19 (8): 1399-1410
标识
DOI:10.5664/jcsm.10574
摘要

Although many military personnel with insomnia are treated with prescription medication, little reliable guidance exists to identify patients most likely to respond. As a first step toward personalized care for insomnia, we present results of a machine-learning model to predict response to insomnia medication.The sample comprised n = 4,738 nondeployed US Army soldiers treated with insomnia medication and followed 6-12 weeks after initiating treatment. All patients had moderate-severe baseline scores on the Insomnia Severity Index (ISI) and completed 1 or more follow-up ISIs 6-12 weeks after baseline. An ensemble machine-learning model was developed in a 70% training sample to predict clinically significant ISI improvement, defined as reduction of at least 2 standard deviations on the baseline ISI distribution. Predictors included a wide range of military administrative and baseline clinical variables. Model accuracy was evaluated in the remaining 30% test sample.21.3% of patients had clinically significant ISI improvement. Model test sample area under the receiver operating characteristic curve (standard error) was 0.63 (0.02). Among the 30% of patients with the highest predicted probabilities of improvement, 32.5.% had clinically significant symptom improvement vs 16.6% in the 70% sample predicted to be least likely to improve (χ21 = 37.1, P < .001). More than 75% of prediction accuracy was due to 10 variables, the most important of which was baseline insomnia severity.Pending replication, the model could be used as part of a patient-centered decision-making process for insomnia treatment, but parallel models will be needed for alternative treatments before such a system is of optimal value.Gabbay FH, Wynn GH, Georg MW, et al. Toward personalized care for insomnia in the US Army: development of a machine-learning model to predict response to pharmacotherapy. J Clin Sleep Med. 2023;19(8):1399-1410.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向的白玉完成签到 ,获得积分10
2分钟前
2分钟前
翟半仙发布了新的文献求助10
2分钟前
2分钟前
turui完成签到 ,获得积分10
2分钟前
jyy应助晶杰采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
翟半仙发布了新的文献求助20
3分钟前
fuueer完成签到 ,获得积分10
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
上官若男应助LJYang采纳,获得30
3分钟前
翟半仙完成签到,获得积分10
3分钟前
gy完成签到,获得积分10
4分钟前
华仔应助去去去去采纳,获得30
5分钟前
5分钟前
5分钟前
去去去去发布了新的文献求助30
6分钟前
方琼燕完成签到 ,获得积分10
6分钟前
段誉完成签到 ,获得积分10
6分钟前
yanhua完成签到,获得积分20
6分钟前
6分钟前
桐桐应助Mine采纳,获得10
6分钟前
6分钟前
6分钟前
Mine发布了新的文献求助10
6分钟前
7分钟前
Ava应助Mine采纳,获得50
7分钟前
晶杰发布了新的文献求助10
8分钟前
hongxuezhi完成签到,获得积分10
9分钟前
9分钟前
Mine发布了新的文献求助50
9分钟前
晶杰完成签到 ,获得积分10
10分钟前
大个应助雅樱采纳,获得10
10分钟前
Hello应助要减肥的婷冉采纳,获得10
10分钟前
要减肥的婷冉完成签到,获得积分10
10分钟前
10分钟前
Mine完成签到,获得积分10
10分钟前
10分钟前
12分钟前
13分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142742
求助须知:如何正确求助?哪些是违规求助? 2793633
关于积分的说明 7807045
捐赠科研通 2449903
什么是DOI,文献DOI怎么找? 1303531
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335