A predictive model for L-T4 dose in postoperative DTC after RAI therapy and its clinical validation in two institutions

医学 模型验证 医学物理学 肿瘤科 内科学 计算机科学 数据科学
作者
Jianjing Liu,Ziyang Wang,Yuan-Fang Yue,Guo-Tao Yin,Li-Na Tong,Jie Fu,Xiaoying Ma,Yan Li,Xue-Yao Liu,Libo Zhang,S Y Qian,Zhao Yang,Xiaofeng Li,Wengui Xu,Dong Dai
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fendo.2024.1425101
摘要

Purpose To develop a predictive model using machine learning for levothyroxine (L-T4) dose selection in patients with differentiated thyroid cancer (DTC) after resection and radioactive iodine (RAI) therapy and to prospectively validate the accuracy of the model in two institutions. Methods A total of 266 DTC patients who received RAI therapy after thyroidectomy and achieved target thyroid stimulating hormone (TSH) level were included in this retrospective study. Sixteen clinical and biochemical characteristics that could potentially influence the L-T4 dose were collected; Significant features correlated with L-T4 dose were selected using machine learning random forest method, and a total of eight regression models were established to assess their performance in prediction of L-T4 dose after RAI therapy; The optimal model was validated through a two-center prospective study (n=263). Results Six significant clinical and biochemical features were selected, including body surface area (BSA), weight, hemoglobin (HB), height, body mass index (BMI), and age. Cross-validation showed that the support vector regression (SVR) model was with the highest accuracy (53.4%) for prediction of L-T4 dose among the established eight models. In the two-center prospective validation study, a total of 263 patients were included. The TSH targeting rate based on constructed SVR model were dramatically higher than that based on empirical administration (Rate 1 (first rate): 52.09% (137/263) vs 10.53% (28/266); Rate 2 (cumulative rate): 85.55% (225/263) vs 53.38% (142/266)). Furthermore, the model significantly shortens the time (days) to achieve target TSH level (62.61 ± 58.78 vs 115.50 ± 71.40). Conclusions The constructed SVR model can effectively predict the L-T4 dose for postoperative DTC after RAI therapy, thus shortening the time to achieve TSH target level and improving the quality of life for DTC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
胖头鱼发布了新的文献求助20
2秒前
2秒前
Non0完成签到,获得积分10
4秒前
5秒前
万能图书馆应助笙木采纳,获得10
5秒前
慕青应助暴躁的初夏采纳,获得10
5秒前
5秒前
5秒前
健忘泽洋发布了新的文献求助10
5秒前
Hello应助peterlzb1234567采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
研友_VZG7GZ应助JQB采纳,获得10
7秒前
7秒前
7秒前
大模型应助guard采纳,获得10
7秒前
guozizi发布了新的文献求助150
8秒前
咖啡八块八完成签到,获得积分10
8秒前
情怀应助皮卡丘采纳,获得10
9秒前
666完成签到,获得积分10
10秒前
轩辕德地发布了新的文献求助10
10秒前
不来的人完成签到 ,获得积分10
10秒前
爱静静应助emm采纳,获得10
11秒前
12秒前
沧海泪发布了新的文献求助10
12秒前
烂漫以冬发布了新的文献求助30
13秒前
rebecka发布了新的文献求助10
13秒前
为溪发布了新的文献求助10
13秒前
科研通AI5应助zz采纳,获得10
14秒前
Lucas应助windsky采纳,获得10
15秒前
15秒前
小二郎应助莫妮卡采纳,获得10
16秒前
科研女菩萨阿巴阿巴完成签到,获得积分10
16秒前
16秒前
上官若男应助毛毛采纳,获得10
16秒前
乐乐应助胖头鱼采纳,获得10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555360
求助须知:如何正确求助?哪些是违规求助? 3130973
关于积分的说明 9389383
捐赠科研通 2830472
什么是DOI,文献DOI怎么找? 1556047
邀请新用户注册赠送积分活动 726376
科研通“疑难数据库(出版商)”最低求助积分说明 715738