Proteomic Assessment of the Risk of Secondary Cardiovascular Events among Individuals with CKD

医学 内科学 肾脏疾病 弗雷明翰风险评分 队列 心力衰竭 心脏病学 透析 肾功能 疾病
作者
Rajat Deo,Ruth F. Dubin,Yue Ren,Jianqiao Wang,Harold I. Feldman,Haochang Shou,Josef Coresh,Morgan E. Grams,Aditya Surapaneni,Jordana B. Cohen,Mayank Kansal,Mahboob Rahman,Mirela Dobre,Jiang He,Tanika N. Kelly,Alan S. Go,Paul L. Kimmel,Ramachandran S. Vasan,Mark R. Segal,Hongzhe Li,Peter Ganz
出处
期刊:Journal of The American Society of Nephrology
标识
DOI:10.1681/asn.0000000502
摘要

Key Points Machine learning and large-scale proteomics led to a 16-protein secondary cardiovascular risk model in patients with CKD. Hepatic fibrosis and liver X receptor activation represented biologic pathways that link kidney disease and risk of secondary cardiovascular events. An understanding of the circulating proteins associated with secondary cardiovascular events may help to identify novel therapeutic targets. Background Cardiovascular risk models have been developed primarily for incident events. Well-performing models are lacking to predict secondary cardiovascular events among people with a history of coronary heart disease, stroke, or heart failure who also have CKD. We sought to develop a proteomic risk score for cardiovascular events in individuals with CKD and a history of cardiovascular disease. Methods We measured 4638 plasma proteins among 1067 participants from the Chronic Renal Insufficiency Cohort (CRIC) and 536 individuals from the Atherosclerosis Risk in Communities (ARIC) Cohort. All had non–dialysis-dependent CKD and coronary heart disease, heart failure, or stroke at study baseline. A proteomic risk model for secondary cardiovascular events was derived by elastic net regression in CRIC, validated in ARIC, and compared with clinical models. Biologic mechanisms of secondary events were characterized through proteomic pathway analysis. Results A 16-protein risk model was superior to the Framingham Risk Score for secondary events, including a modified score that included eGFR. In CRIC, the annualized area under the receiver operating characteristic curve (area under the curve) within 1–5 years ranged between 0.77 and 0.80 for the protein model and 0.57 and 0.72 for the clinical models. These findings were replicated in the ARIC validation cohort. Biologic pathway analysis identified pathways and proteins for cardiac remodeling and fibrosis, vascular disease, and thrombosis. Conclusions The proteomic risk model for secondary cardiovascular events outperformed clinical models on the basis of traditional risk factors and eGFR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋圆Z.完成签到,获得积分10
刚刚
atad2发布了新的文献求助10
刚刚
li梨完成签到,获得积分10
刚刚
1秒前
晏小敏完成签到,获得积分10
1秒前
爆米花应助风中寄云采纳,获得10
2秒前
屹舟发布了新的文献求助10
2秒前
Dou完成签到,获得积分10
2秒前
白泯完成签到,获得积分10
3秒前
1ssd发布了新的文献求助10
3秒前
667发布了新的文献求助10
3秒前
小二郎应助辰柒采纳,获得10
4秒前
5秒前
5秒前
clear完成签到,获得积分20
5秒前
5秒前
orixero应助congguitar采纳,获得10
5秒前
Evan完成签到,获得积分10
5秒前
YANG发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助10
6秒前
sunzhiyu233发布了新的文献求助10
7秒前
Raul完成签到 ,获得积分10
7秒前
7秒前
伯尔尼圆白菜完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
buuyoo完成签到,获得积分10
8秒前
科研通AI5应助魏煜佳采纳,获得10
8秒前
LLxiaolong完成签到,获得积分10
8秒前
9秒前
9秒前
巨噬细胞A完成签到,获得积分10
9秒前
9秒前
我要读博士完成签到 ,获得积分10
9秒前
xxq完成签到,获得积分20
9秒前
福气小姐完成签到 ,获得积分10
9秒前
搜集达人应助jjy采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759