A Physically Constrained Model-Based Moisture Amplification Approach for Probable Maximum Precipitation (PMP) Estimation

降水 环境科学 水分 估计 水文气象 气象学 气候学 地质学 地理 工程类 系统工程
作者
Emilie Tarouilly,Kathleen D. Holman,Dennis P. Lettenmaier
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (9): 1407-1420
标识
DOI:10.1175/jhm-d-23-0204.1
摘要

Abstract The flood that would result from the greatest depth of precipitation “meteorologically possible” or probable maximum precipitation (PMP) is used in the design of dam spillways and other high-risk structures. Historically, PMP has been estimated by scaling precipitation totals obtained from severe historical storms, assuming more moisture could have been available. Over the last decade, numerical weather prediction models have been used to instead predict precipitation resulting from the addition of moisture in the simulations [called relative humidity maximization (RHM)]. Despite the major improvement they represent, two important barriers limit the applicability of model-based methods: first, the existence of different moisture amplification approaches that produce different estimates, and second, the need for a regional implementation of those techniques that were developed for individual basins. Taking Oregon’s mountainous coastal watersheds affected by atmospheric river storms as a case study, we develop a moisture amplification approach, which we call relative humidity perturbation (RHP) ratio that is physically constrained by historical maximum moisture. We find that both the magnitude and location of moisture increase matter and that RHP ratio produces lower amplified precipitation totals but storms that are more consistent with observed events than other methods such as RHM. We additionally find that it is possible to position a storm near-optimally over several basins in a homogeneous area, enabling the production of regional PMP estimates. The understanding we develop of the control moisture exerts on PMP-magnitude precipitation totals allows us to develop a more physically based methodology for the development of reliable storm amplification guidance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨阳洋完成签到 ,获得积分10
1秒前
傻傻的磬完成签到 ,获得积分10
3秒前
橘颂完成签到,获得积分10
3秒前
4秒前
务实文涛完成签到,获得积分10
4秒前
打打应助科研通管家采纳,获得10
4秒前
张a应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
非雨非晴完成签到,获得积分10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
张a应助科研通管家采纳,获得10
5秒前
monly应助科研通管家采纳,获得10
5秒前
5秒前
张a应助科研通管家采纳,获得10
5秒前
Polling完成签到,获得积分10
5秒前
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
张a应助科研通管家采纳,获得10
5秒前
monly应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
张a应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
monly应助科研通管家采纳,获得10
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728665
求助须知:如何正确求助?哪些是违规求助? 5314143
关于积分的说明 15314925
捐赠科研通 4875842
什么是DOI,文献DOI怎么找? 2618989
邀请新用户注册赠送积分活动 1568649
关于科研通互助平台的介绍 1525191