Designing Electronic Structures of Multiscale Helical Converters for Tailored Ultrabroad Electromagnetic Absorption

材料科学 反射损耗 超材料 兴奋剂 宽带 吸收(声学) 电磁辐射 衰减 极化(电化学) 转换器 光电子学 微波食品加热 光学 纳米技术 复合数 物理 计算机科学 电气工程 复合材料 化学 电信 工程类 电压 物理化学
作者
Zhaobo Feng,Chongbo Liu,Xin Li,Guangsheng Luo,Naixin Zhai,Ruizhe Hu,Jing Lin,J. H. Peng,Yuhui Peng,Renchao Che
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:17 (1) 被引量:43
标识
DOI:10.1007/s40820-024-01513-2
摘要

Abstract Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption (EMWA) materials. However, the relationship between configuration and electromagnetic (EM) loss mechanism has remained elusive. Herein, drawing inspiration from the DNA transcription process, we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability. Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N 4 –C configuration, along with cross polarization generated by the helical structure, endow the helical converters with enhanced EM loss. As a result, HMC-8 demonstrates outstanding EMWA performance, achieving a minimum reflection loss of −63.13 dB at an ultralow thickness of 1.29 mm. Through precise tuning of the graphite domain size, HMC-7 achieves an effective absorption bandwidth (EAB) of 6.08 GHz at 2.02 mm thickness. Furthermore, constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm, with the maximum radar cross section reduction value reaching 36.4 dB m 2 . This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA, thus contributing to the development of EMWA mechanisms and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
筋筋子完成签到,获得积分10
刚刚
刚刚
2秒前
Jasper应助qwerdf采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
tiptip应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
tiptip应助科研通管家采纳,获得10
3秒前
搜集达人应助机智的阿振采纳,获得10
3秒前
熬夜波比应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
tiptip应助科研通管家采纳,获得10
4秒前
4秒前
顾矜应助可靠飞飞采纳,获得10
4秒前
葵明完成签到,获得积分10
4秒前
浮游应助南昌小霸王采纳,获得10
4秒前
小白发布了新的文献求助10
5秒前
gfjh发布了新的文献求助10
5秒前
prawn218完成签到,获得积分10
7秒前
史超发布了新的文献求助10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039