Pancreatic cancer is an aggressive and metastatic tumor that lacks effective early detection and treatment methods. There is an urgent need to further understand its underlying molecular mechanisms and identify new biomarkers for early detection. Zinc, a critical trace element and catalytic cofactor, is tightly regulated within cells. ZIP4, a zinc transporter protein significantly overexpressed in human pancreatic cancer, appears to play a pivotal role in tumor development by modulating intracellular zinc concentration. This review highlights the role of ZIP4 in tumorigenesis, including its impact on pancreatic cancer growth, proliferation, migration, and drug resistance. ZIP4 exerts its effects by regulating zinc dependent transcriptional factors like CREB, STAT3, and ZEB1, resulting in upregulation of Cyclin D1, TP53INP1, ITGA3, CD44, ENT1 proteins, and miR-373. Moreover, ZIP4 mediates the miR373-PHLPP2-AKT signaling axis, which increases TGF-β expression. Coupled with CREB-activated macrophage catabolism-related genes SDC1 and DNM2, ZIP4 promotes cancer cachexia and supports amino acids to tumor cells under metabolic stress. Furthermore, ZIP4 facilitates bone resorption by osteoclasts via the RANKL-activated NF-κB pathway. A deeper understanding of these mechanisms may unveil potential targets for early diagnosis, prognosis assessment, and dietary recommendations for pancreatic cancer. These findings hold clinical significance not only for pancreatic cancer but also for other malignancies exhibiting heightened ZIP4 expression.