Model‐Informed Reinforcement Learning for Enabling Precision Dosing Via Adaptive Dosing

加药 强化学习 钢筋 计算机科学 人工智能 心理学 医学 药理学 社会心理学
作者
Elena M. Tosca,Alessandro De Carlo,Davide Ronchi,Paolo Magni
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
被引量:2
标识
DOI:10.1002/cpt.3356
摘要

Precision dosing, the tailoring of drug doses to optimize therapeutic benefits and minimize risks in each patient, is essential for drugs with a narrow therapeutic window and severe adverse effects. Adaptive dosing strategies extend the precision dosing concept to time-varying treatments which require sequential dose adjustments based on evolving patient conditions. Reinforcement learning (RL) naturally fits this paradigm: it perfectly mimics the sequential decision-making process where clinicians adapt dose administration based on patient response and evolution monitoring. This paper aims to investigate the potentiality of coupling RL with population PK/PD models to develop precision dosing algorithms, reviewing the most relevant works in the field. Case studies in which PK/PD models were integrated within RL algorithms as simulation engine to predict consequences of any dosing action have been considered and discussed. They mainly concern propofol-induced anesthesia, anticoagulant therapy with warfarin and a variety of anticancer treatments differing for administered agents and/or monitored biomarkers. The resulted picture highlights a certain heterogeneity in terms of precision dosing approaches, applied methodologies, and degree of adherence to the clinical domain. In addition, a tutorial on how a precision dosing problem should be formulated in terms of the key elements composing the RL framework (i.e., system state, agent actions and reward function), and on how PK/PD models could enhance RL approaches is proposed for readers interested in delving in this field. Overall, the integration of PK/PD models into a RL-framework holds great promise for precision dosing, but further investigations and advancements are still needed to address current limitations and extend the applicability of this methodology to drugs requiring adaptive dosing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
寂寞的灵发布了新的文献求助10
2秒前
GYang完成签到,获得积分20
2秒前
2秒前
zhu007liang完成签到,获得积分10
4秒前
JerryZ发布了新的文献求助10
5秒前
小匹夫发布了新的文献求助10
6秒前
烟花应助rtpa采纳,获得10
6秒前
细腻的凡蕾关注了科研通微信公众号
8秒前
8秒前
搜集达人应助James采纳,获得10
9秒前
12秒前
13秒前
大栗子完成签到,获得积分10
13秒前
14秒前
水水发布了新的文献求助10
14秒前
欢呼凡英完成签到,获得积分10
15秒前
杨然完成签到 ,获得积分10
16秒前
科研通AI2S应助瑶一瑶采纳,获得10
17秒前
18秒前
leclerc发布了新的文献求助10
20秒前
20秒前
20秒前
James发布了新的文献求助10
23秒前
脑洞疼应助谭阿面采纳,获得10
23秒前
rtpa发布了新的文献求助10
24秒前
25秒前
科目三应助科研通管家采纳,获得10
27秒前
tomorrow505应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
tomorrow505应助科研通管家采纳,获得10
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
林前十三完成签到,获得积分10
27秒前
27秒前
28秒前
科目三应助科研通管家采纳,获得10
28秒前
无花果应助科研通管家采纳,获得30
28秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334795
求助须知:如何正确求助?哪些是违规求助? 2964054
关于积分的说明 8612143
捐赠科研通 2642902
什么是DOI,文献DOI怎么找? 1447045
科研通“疑难数据库(出版商)”最低求助积分说明 670503
邀请新用户注册赠送积分活动 658745