已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Model‐Informed Reinforcement Learning for Enabling Precision Dosing Via Adaptive Dosing

加药 强化学习 钢筋 计算机科学 人工智能 心理学 医学 药理学 社会心理学
作者
Elena M. Tosca,Alessandro De Carlo,Davide Ronchi,Paolo Magni
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:116 (3): 619-636 被引量:7
标识
DOI:10.1002/cpt.3356
摘要

Precision dosing, the tailoring of drug doses to optimize therapeutic benefits and minimize risks in each patient, is essential for drugs with a narrow therapeutic window and severe adverse effects. Adaptive dosing strategies extend the precision dosing concept to time-varying treatments which require sequential dose adjustments based on evolving patient conditions. Reinforcement learning (RL) naturally fits this paradigm: it perfectly mimics the sequential decision-making process where clinicians adapt dose administration based on patient response and evolution monitoring. This paper aims to investigate the potentiality of coupling RL with population PK/PD models to develop precision dosing algorithms, reviewing the most relevant works in the field. Case studies in which PK/PD models were integrated within RL algorithms as simulation engine to predict consequences of any dosing action have been considered and discussed. They mainly concern propofol-induced anesthesia, anticoagulant therapy with warfarin and a variety of anticancer treatments differing for administered agents and/or monitored biomarkers. The resulted picture highlights a certain heterogeneity in terms of precision dosing approaches, applied methodologies, and degree of adherence to the clinical domain. In addition, a tutorial on how a precision dosing problem should be formulated in terms of the key elements composing the RL framework (i.e., system state, agent actions and reward function), and on how PK/PD models could enhance RL approaches is proposed for readers interested in delving in this field. Overall, the integration of PK/PD models into a RL-framework holds great promise for precision dosing, but further investigations and advancements are still needed to address current limitations and extend the applicability of this methodology to drugs requiring adaptive dosing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小虎应助寒雪采纳,获得10
7秒前
欢呼败完成签到 ,获得积分10
10秒前
小白白发布了新的文献求助10
20秒前
龙王爱吃糖完成签到 ,获得积分10
21秒前
酷波er应助duobao鱼采纳,获得10
24秒前
27秒前
鲤鱼安青完成签到 ,获得积分10
27秒前
Cosmosurfer完成签到,获得积分10
29秒前
寒雪完成签到,获得积分10
30秒前
笑点低紊发布了新的文献求助20
30秒前
in完成签到 ,获得积分10
33秒前
34秒前
pinklay完成签到 ,获得积分10
38秒前
邓佳鑫Alan应助狂野忆文采纳,获得10
38秒前
科研通AI2S应助狂野忆文采纳,获得10
38秒前
SYLH应助狂野忆文采纳,获得10
38秒前
SYLH应助狂野忆文采纳,获得10
38秒前
SYLH应助狂野忆文采纳,获得10
45秒前
SYLH应助狂野忆文采纳,获得10
45秒前
SYLH应助狂野忆文采纳,获得10
45秒前
SYLH应助狂野忆文采纳,获得10
45秒前
SYLH应助狂野忆文采纳,获得10
45秒前
科研通AI2S应助狂野忆文采纳,获得10
45秒前
扎心应助狂野忆文采纳,获得10
45秒前
扎心应助狂野忆文采纳,获得10
46秒前
科研通AI2S应助狂野忆文采纳,获得10
46秒前
充电宝应助狂野忆文采纳,获得10
46秒前
战战兢兢完成签到 ,获得积分10
54秒前
小宇完成签到 ,获得积分10
1分钟前
华仔应助幽悠梦儿采纳,获得10
1分钟前
jnoker完成签到 ,获得积分10
1分钟前
要好好看文献完成签到,获得积分10
1分钟前
RSU完成签到,获得积分10
1分钟前
Owen应助阿尼采纳,获得10
1分钟前
666666666666666完成签到 ,获得积分10
1分钟前
李健的小迷弟应助六沉采纳,获得10
1分钟前
1分钟前
Nakacoke77完成签到,获得积分10
1分钟前
yingying完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176