Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model

估计 中国 计算机科学 环境科学 地理 工程类 系统工程 考古
作者
Naveed Ahmad,Changqing Lin,Alexis K.H. Lau,Jhoon Kim,Tianshu Zhang,Fangqun Yu,Chengcai Li,Ying Li,Jimmy Chi Hung Fung,Xiang Qian Lao
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:24 (16): 9645-9665
标识
DOI:10.5194/acp-24-9645-2024
摘要

Abstract. The major link between satellite-derived vertical column densities (VCDs) of nitrogen dioxide (NO2) and ground-level concentrations is theoretically the NO2 mixing height (NMH). Various meteorological parameters have been used as a proxy for NMH in existing studies. This study developed a nested XGBoost machine learning model to convert VCDs of NO2 into ground-level NO2 concentrations across China using Geostationary Environmental Monitoring Spectrometer (GEMS) measurements. This nested model was designed to directly incorporate NMH into the methodological framework to estimate satellite-derived ground-level NO2 concentrations. The inner machine learning model predicted the NMH from meteorological parameters, which were then input into the main XGBoost machine learning model to predict the ground-level NO2 concentrations from its VCDs. The inclusion of NMH significantly enhanced the accuracy of ground-level NO2 concentration estimates; i.e., the R2 values were improved from 0.73 to 0.93 in 10-fold cross-validation and from 0.88 to 0.99 in the fully trained model. Furthermore, NMH was identified as the second most important predictor variable, following the VCDs of NO2. Subsequently, the satellite-derived ground-level NO2 data were analyzed across subregions with varying geographic locations and urbanization levels. Highly populated areas typically experienced peak NO2 concentrations during the early morning rush hour, whereas areas categorized as lightly populated observed a slight increase in NO2 levels 1 or 2 h later, likely due to regional pollutant dispersion from urban sources. This study underscores the importance of incorporating NMH in estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of geostationary satellites in providing detailed air pollution information at an hourly resolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小y扬土完成签到,获得积分10
1秒前
奇怪的铁柱大人完成签到,获得积分10
1秒前
聪仔发布了新的文献求助10
1秒前
方勇飞完成签到,获得积分10
2秒前
清风发布了新的文献求助10
2秒前
0701发布了新的文献求助10
2秒前
3秒前
yyds发布了新的文献求助30
5秒前
5秒前
Fitz完成签到,获得积分10
5秒前
游一发布了新的文献求助10
6秒前
慕青应助seanx采纳,获得10
6秒前
6秒前
雨中小王应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
7秒前
雨中小王应助科研通管家采纳,获得10
7秒前
不配.应助科研通管家采纳,获得200
7秒前
李健应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
Pendragon发布了新的文献求助10
8秒前
8秒前
8秒前
魔法少女猪壮壮完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
星期五完成签到,获得积分10
10秒前
阁主完成签到,获得积分10
11秒前
传奇3应助dd采纳,获得10
11秒前
乐乐应助汤婆婆采纳,获得10
12秒前
苹果亦巧完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497