亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model

估计 中国 计算机科学 环境科学 地理 工程类 系统工程 考古
作者
Naveed Ahmad,Changqing Lin,Alexis K.H. Lau,Jhoon Kim,Tianshu Zhang,Fangqun Yu,Chengcai Li,Ying Li,Jimmy Chi Hung Fung,Xiang Qian Lao
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:24 (16): 9645-9665
标识
DOI:10.5194/acp-24-9645-2024
摘要

Abstract. The major link between satellite-derived vertical column densities (VCDs) of nitrogen dioxide (NO2) and ground-level concentrations is theoretically the NO2 mixing height (NMH). Various meteorological parameters have been used as a proxy for NMH in existing studies. This study developed a nested XGBoost machine learning model to convert VCDs of NO2 into ground-level NO2 concentrations across China using Geostationary Environmental Monitoring Spectrometer (GEMS) measurements. This nested model was designed to directly incorporate NMH into the methodological framework to estimate satellite-derived ground-level NO2 concentrations. The inner machine learning model predicted the NMH from meteorological parameters, which were then input into the main XGBoost machine learning model to predict the ground-level NO2 concentrations from its VCDs. The inclusion of NMH significantly enhanced the accuracy of ground-level NO2 concentration estimates; i.e., the R2 values were improved from 0.73 to 0.93 in 10-fold cross-validation and from 0.88 to 0.99 in the fully trained model. Furthermore, NMH was identified as the second most important predictor variable, following the VCDs of NO2. Subsequently, the satellite-derived ground-level NO2 data were analyzed across subregions with varying geographic locations and urbanization levels. Highly populated areas typically experienced peak NO2 concentrations during the early morning rush hour, whereas areas categorized as lightly populated observed a slight increase in NO2 levels 1 or 2 h later, likely due to regional pollutant dispersion from urban sources. This study underscores the importance of incorporating NMH in estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of geostationary satellites in providing detailed air pollution information at an hourly resolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
25秒前
zyx发布了新的文献求助10
28秒前
aq22完成签到 ,获得积分10
34秒前
快乐小狗发布了新的文献求助10
34秒前
37秒前
fgh完成签到 ,获得积分10
38秒前
李爱国应助古德里安鸭子采纳,获得10
40秒前
子曰发布了新的文献求助10
40秒前
思源应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
1分钟前
1分钟前
充电宝应助古德里安鸭子采纳,获得10
1分钟前
2分钟前
Yi完成签到,获得积分10
2分钟前
深深发布了新的文献求助10
2分钟前
2分钟前
深深完成签到,获得积分20
2分钟前
2分钟前
昏睡的蟠桃应助深深采纳,获得30
2分钟前
shuyi_liu发布了新的文献求助10
2分钟前
紧张的书文完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
快乐小狗发布了新的文献求助10
2分钟前
Cica发布了新的文献求助10
2分钟前
cc完成签到,获得积分10
2分钟前
科研通AI2S应助快乐小狗采纳,获得10
2分钟前
怕孤独的橘子完成签到,获得积分20
3分钟前
3分钟前
3分钟前
ddddddd完成签到 ,获得积分10
4分钟前
4分钟前
yanyue发布了新的文献求助10
4分钟前
Hello应助yanyue采纳,获得10
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
所所应助王小鱼采纳,获得10
5分钟前
5分钟前
5分钟前
爱你没差完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515838
求助须知:如何正确求助?哪些是违规求助? 4609107
关于积分的说明 14514451
捐赠科研通 4545619
什么是DOI,文献DOI怎么找? 2490746
邀请新用户注册赠送积分活动 1472648
关于科研通互助平台的介绍 1444358