Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model

估计 中国 计算机科学 环境科学 地理 工程类 系统工程 考古
作者
Naveed Ahmad,Changqing Lin,Alexis K.H. Lau,Jhoon Kim,Tianshu Zhang,Fangqun Yu,Chengcai Li,Ying Li,Jimmy Chi Hung Fung,Xiang Qian Lao
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:24 (16): 9645-9665
标识
DOI:10.5194/acp-24-9645-2024
摘要

Abstract. The major link between satellite-derived vertical column densities (VCDs) of nitrogen dioxide (NO2) and ground-level concentrations is theoretically the NO2 mixing height (NMH). Various meteorological parameters have been used as a proxy for NMH in existing studies. This study developed a nested XGBoost machine learning model to convert VCDs of NO2 into ground-level NO2 concentrations across China using Geostationary Environmental Monitoring Spectrometer (GEMS) measurements. This nested model was designed to directly incorporate NMH into the methodological framework to estimate satellite-derived ground-level NO2 concentrations. The inner machine learning model predicted the NMH from meteorological parameters, which were then input into the main XGBoost machine learning model to predict the ground-level NO2 concentrations from its VCDs. The inclusion of NMH significantly enhanced the accuracy of ground-level NO2 concentration estimates; i.e., the R2 values were improved from 0.73 to 0.93 in 10-fold cross-validation and from 0.88 to 0.99 in the fully trained model. Furthermore, NMH was identified as the second most important predictor variable, following the VCDs of NO2. Subsequently, the satellite-derived ground-level NO2 data were analyzed across subregions with varying geographic locations and urbanization levels. Highly populated areas typically experienced peak NO2 concentrations during the early morning rush hour, whereas areas categorized as lightly populated observed a slight increase in NO2 levels 1 or 2 h later, likely due to regional pollutant dispersion from urban sources. This study underscores the importance of incorporating NMH in estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of geostationary satellites in providing detailed air pollution information at an hourly resolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴大王完成签到,获得积分10
1秒前
思源应助冷傲的靖雁采纳,获得10
2秒前
2秒前
Dr_Zhan完成签到 ,获得积分10
4秒前
文刀刘完成签到 ,获得积分10
5秒前
研友_85rJEL完成签到 ,获得积分10
7秒前
7秒前
小通通完成签到 ,获得积分10
7秒前
领导范儿应助数星星采纳,获得10
8秒前
棒呆了咸蛋超女完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
杨利英完成签到 ,获得积分10
8秒前
7分运气完成签到,获得积分10
8秒前
Yynnn完成签到 ,获得积分10
9秒前
9秒前
11秒前
zwjhbz完成签到,获得积分10
12秒前
科研通AI6.1应助陈龙采纳,获得10
12秒前
赵儒浩发布了新的文献求助10
12秒前
13秒前
14秒前
fyukgfdyifotrf完成签到,获得积分10
14秒前
共享精神应助懒洋洋采纳,获得10
16秒前
拼死拼活完成签到,获得积分10
17秒前
林林完成签到 ,获得积分10
17秒前
hhh发布了新的文献求助10
18秒前
18秒前
19秒前
21秒前
终极007完成签到 ,获得积分10
21秒前
安宁完成签到 ,获得积分10
22秒前
清秀书兰完成签到 ,获得积分10
22秒前
彭于晏应助赵儒浩采纳,获得10
22秒前
曾俊宇完成签到 ,获得积分10
22秒前
22秒前
24秒前
zx发布了新的文献求助10
24秒前
拼死拼活发布了新的文献求助10
24秒前
25秒前
给我好好读书完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838