Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model

估计 中国 计算机科学 环境科学 地理 工程类 系统工程 考古
作者
Naveed Ahmad,Changqing Lin,Alexis K.H. Lau,Jhoon Kim,Tianshu Zhang,Fangqun Yu,Chengcai Li,Ying Li,Jimmy Chi Hung Fung,Xiang Qian Lao
出处
期刊:Atmospheric Chemistry and Physics 卷期号:24 (16): 9645-9665
标识
DOI:10.5194/acp-24-9645-2024
摘要

Abstract. The major link between satellite-derived vertical column densities (VCDs) of nitrogen dioxide (NO2) and ground-level concentrations is theoretically the NO2 mixing height (NMH). Various meteorological parameters have been used as a proxy for NMH in existing studies. This study developed a nested XGBoost machine learning model to convert VCDs of NO2 into ground-level NO2 concentrations across China using Geostationary Environmental Monitoring Spectrometer (GEMS) measurements. This nested model was designed to directly incorporate NMH into the methodological framework to estimate satellite-derived ground-level NO2 concentrations. The inner machine learning model predicted the NMH from meteorological parameters, which were then input into the main XGBoost machine learning model to predict the ground-level NO2 concentrations from its VCDs. The inclusion of NMH significantly enhanced the accuracy of ground-level NO2 concentration estimates; i.e., the R2 values were improved from 0.73 to 0.93 in 10-fold cross-validation and from 0.88 to 0.99 in the fully trained model. Furthermore, NMH was identified as the second most important predictor variable, following the VCDs of NO2. Subsequently, the satellite-derived ground-level NO2 data were analyzed across subregions with varying geographic locations and urbanization levels. Highly populated areas typically experienced peak NO2 concentrations during the early morning rush hour, whereas areas categorized as lightly populated observed a slight increase in NO2 levels 1 or 2 h later, likely due to regional pollutant dispersion from urban sources. This study underscores the importance of incorporating NMH in estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of geostationary satellites in providing detailed air pollution information at an hourly resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr.Zheng完成签到 ,获得积分10
刚刚
雪白微笑完成签到,获得积分20
刚刚
打打应助安静的瑾瑜采纳,获得10
1秒前
万能图书馆应助wsws采纳,获得10
2秒前
FW完成签到,获得积分10
2秒前
3秒前
科目三应助宁琳采纳,获得10
4秒前
充电宝应助cq220采纳,获得10
4秒前
烂漫灯泡完成签到 ,获得积分10
4秒前
大力沛萍发布了新的文献求助10
5秒前
木木完成签到,获得积分10
6秒前
二一而已完成签到,获得积分10
8秒前
煜琪发布了新的文献求助10
9秒前
feifei完成签到,获得积分10
10秒前
Stroeve完成签到,获得积分10
10秒前
11秒前
12秒前
靓丽翩跹发布了新的文献求助10
12秒前
雪白微笑发布了新的文献求助30
14秒前
二一而已发布了新的文献求助10
15秒前
李爱国应助77采纳,获得10
17秒前
18秒前
18秒前
四天垂完成签到 ,获得积分10
19秒前
lllei发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助老婆婆采纳,获得10
21秒前
suzyLL完成签到,获得积分10
21秒前
kkkkkkkkkkey完成签到,获得积分10
21秒前
Luffa发布了新的文献求助10
21秒前
Johann发布了新的文献求助10
24秒前
25秒前
26秒前
t团子完成签到 ,获得积分10
26秒前
星辰大海应助ZZ采纳,获得10
27秒前
caomao发布了新的文献求助10
29秒前
lllei完成签到,获得积分10
32秒前
丹丹发布了新的文献求助10
32秒前
33秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314016
求助须知:如何正确求助?哪些是违规求助? 2946405
关于积分的说明 8529984
捐赠科研通 2622049
什么是DOI,文献DOI怎么找? 1434315
科研通“疑难数据库(出版商)”最低求助积分说明 665201
邀请新用户注册赠送积分活动 650792