Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model

估计 中国 计算机科学 环境科学 地理 工程类 系统工程 考古
作者
Naveed Ahmad,Changqing Lin,Alexis K.H. Lau,Jhoon Kim,Tianshu Zhang,Fangqun Yu,Chengcai Li,Ying Li,Jimmy Chi Hung Fung,Xiang Qian Lao
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:24 (16): 9645-9665
标识
DOI:10.5194/acp-24-9645-2024
摘要

Abstract. The major link between satellite-derived vertical column densities (VCDs) of nitrogen dioxide (NO2) and ground-level concentrations is theoretically the NO2 mixing height (NMH). Various meteorological parameters have been used as a proxy for NMH in existing studies. This study developed a nested XGBoost machine learning model to convert VCDs of NO2 into ground-level NO2 concentrations across China using Geostationary Environmental Monitoring Spectrometer (GEMS) measurements. This nested model was designed to directly incorporate NMH into the methodological framework to estimate satellite-derived ground-level NO2 concentrations. The inner machine learning model predicted the NMH from meteorological parameters, which were then input into the main XGBoost machine learning model to predict the ground-level NO2 concentrations from its VCDs. The inclusion of NMH significantly enhanced the accuracy of ground-level NO2 concentration estimates; i.e., the R2 values were improved from 0.73 to 0.93 in 10-fold cross-validation and from 0.88 to 0.99 in the fully trained model. Furthermore, NMH was identified as the second most important predictor variable, following the VCDs of NO2. Subsequently, the satellite-derived ground-level NO2 data were analyzed across subregions with varying geographic locations and urbanization levels. Highly populated areas typically experienced peak NO2 concentrations during the early morning rush hour, whereas areas categorized as lightly populated observed a slight increase in NO2 levels 1 or 2 h later, likely due to regional pollutant dispersion from urban sources. This study underscores the importance of incorporating NMH in estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of geostationary satellites in providing detailed air pollution information at an hourly resolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1轻微完成签到,获得积分10
1秒前
pluto应助hyh采纳,获得10
2秒前
2秒前
ChiMing发布了新的文献求助10
2秒前
wy完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
zhuxf完成签到 ,获得积分10
4秒前
pufanlg完成签到,获得积分10
5秒前
ChemHu完成签到,获得积分10
8秒前
vivy完成签到 ,获得积分10
8秒前
MIST完成签到,获得积分10
8秒前
马佳音完成签到 ,获得积分10
9秒前
忧伤的八宝粥完成签到,获得积分0
9秒前
meng完成签到,获得积分10
10秒前
猜不猜不完成签到 ,获得积分10
10秒前
一颗糖完成签到 ,获得积分10
11秒前
疑夕完成签到,获得积分10
13秒前
葉鳳怡完成签到 ,获得积分10
13秒前
14秒前
唯美发布了新的文献求助10
14秒前
微笑枫完成签到,获得积分10
14秒前
Fiona完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
lcs完成签到,获得积分10
15秒前
kunny完成签到 ,获得积分10
15秒前
sunwei完成签到,获得积分10
15秒前
pluto应助hyh采纳,获得10
17秒前
隔水一路秋完成签到,获得积分10
17秒前
TonyXWZhang完成签到,获得积分10
18秒前
不信人间有白头完成签到 ,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
Tengami完成签到,获得积分10
20秒前
20秒前
22秒前
zhangchen123发布了新的文献求助10
24秒前
emma完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
ChiMing发布了新的文献求助10
26秒前
无辜的惜文完成签到,获得积分10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698543
求助须知:如何正确求助?哪些是违规求助? 5125106
关于积分的说明 15221770
捐赠科研通 4853596
什么是DOI,文献DOI怎么找? 2604155
邀请新用户注册赠送积分活动 1555719
关于科研通互助平台的介绍 1514006