RENA-Depth: toward recursion representation enhancement in neighborhood attention guided lightweight self-supervised monocular depth estimation

计算机科学 单眼 递归(计算机科学) 人工智能 代表(政治) 计算机视觉 估计 计算机图形学(图像) 算法 管理 政治 政治学 法学 经济
作者
Chaochao Yang,Yuanyao Lu,Yongsheng Qiu,Yuantao Wang
出处
期刊:Optical Engineering [SPIE]
卷期号:63 (08)
标识
DOI:10.1117/1.oe.63.8.088103
摘要

Although self-supervised depth estimation models based on transformers have achieved success, lightweight depth prediction networks exhibit a particularly pronounced issue with depth prediction blurriness at object boundaries compared to standard depth prediction networks. We found that this problem arises from the token dimension constraints, which limit the precise representation of semantic and spatial information. To address this challenge, we introduce a lightweight monocular self-supervised depth estimation network, RENA-Depth, which leverages convolutional neural network neighborhood attention-guided recursive Transformers to enhance depth estimation precision. Specifically, the design begins with the introduction of neighborhood adaptive attention (NA), which focuses on local and regional scales. This component adaptively mines latent semantic and spatial information from the neighborhoods of the input features of self-attention. Subsequently, a global feature recursive interaction module was developed to recursively refine the interaction between local and global information, enhancing the representation of semantic and spatial information without a significant increase in parameters. Finally, an attention equilibrium loss is proposed, which motivates richer semantic information representation and clarifies boundary depth by penalizing the orthogonality similarity of attention mechanisms. Extensive evaluations on the Karlsruhe Institute of Technology and Toyota Technological Institute and Make3D datasets have demonstrated that the proposed lightweight self-supervised depth estimation model, RENA-Depth, outperforms the most advanced lightweight depth detection algorithms, confirming its efficacy and innovation in improving depth prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenlichan发布了新的文献求助10
2秒前
体贴的叛逆者完成签到,获得积分10
2秒前
和谐续完成签到 ,获得积分10
9秒前
fatcat完成签到,获得积分10
13秒前
一行白鹭上青天完成签到 ,获得积分10
13秒前
19秒前
又是一年完成签到,获得积分10
19秒前
飘文献完成签到,获得积分0
20秒前
和科研不太熟完成签到 ,获得积分10
23秒前
chenlichan完成签到,获得积分10
23秒前
zhaoyaoshi完成签到 ,获得积分10
23秒前
23秒前
十点差一分完成签到 ,获得积分10
25秒前
咖啡味椰果完成签到 ,获得积分10
26秒前
深情芷发布了新的文献求助10
28秒前
Zephyr完成签到,获得积分10
29秒前
31秒前
lcxszsd完成签到 ,获得积分10
35秒前
木野狐发布了新的文献求助10
35秒前
忧伤的南莲完成签到,获得积分10
36秒前
凌兰完成签到 ,获得积分10
36秒前
欧阳枫完成签到 ,获得积分10
36秒前
yuki完成签到,获得积分10
36秒前
月亮与六便士完成签到 ,获得积分10
38秒前
39秒前
孤独雨梅完成签到,获得积分10
42秒前
HQ完成签到,获得积分10
42秒前
ysssbq完成签到,获得积分10
43秒前
深情芷发布了新的文献求助10
45秒前
赘婿应助科研通管家采纳,获得10
45秒前
Ava应助科研通管家采纳,获得10
45秒前
CyrusSo524应助科研通管家采纳,获得10
45秒前
丘比特应助科研通管家采纳,获得10
45秒前
田様应助科研通管家采纳,获得10
45秒前
ding应助科研通管家采纳,获得10
45秒前
852应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
Ava应助科研通管家采纳,获得10
46秒前
Jasper应助科研通管家采纳,获得10
46秒前
ludong_0应助科研通管家采纳,获得10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511071
关于积分的说明 11156136
捐赠科研通 3245633
什么是DOI,文献DOI怎么找? 1793097
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268