已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RENA-Depth: toward recursion representation enhancement in neighborhood attention guided lightweight self-supervised monocular depth estimation

计算机科学 单眼 递归(计算机科学) 人工智能 代表(政治) 计算机视觉 估计 计算机图形学(图像) 算法 管理 政治 政治学 法学 经济
作者
Chaochao Yang,Yuanyao Lu,Yongsheng Qiu,Yuantao Wang
出处
期刊:Optical Engineering [SPIE - International Society for Optical Engineering]
卷期号:63 (08)
标识
DOI:10.1117/1.oe.63.8.088103
摘要

Although self-supervised depth estimation models based on transformers have achieved success, lightweight depth prediction networks exhibit a particularly pronounced issue with depth prediction blurriness at object boundaries compared to standard depth prediction networks. We found that this problem arises from the token dimension constraints, which limit the precise representation of semantic and spatial information. To address this challenge, we introduce a lightweight monocular self-supervised depth estimation network, RENA-Depth, which leverages convolutional neural network neighborhood attention-guided recursive Transformers to enhance depth estimation precision. Specifically, the design begins with the introduction of neighborhood adaptive attention (NA), which focuses on local and regional scales. This component adaptively mines latent semantic and spatial information from the neighborhoods of the input features of self-attention. Subsequently, a global feature recursive interaction module was developed to recursively refine the interaction between local and global information, enhancing the representation of semantic and spatial information without a significant increase in parameters. Finally, an attention equilibrium loss is proposed, which motivates richer semantic information representation and clarifies boundary depth by penalizing the orthogonality similarity of attention mechanisms. Extensive evaluations on the Karlsruhe Institute of Technology and Toyota Technological Institute and Make3D datasets have demonstrated that the proposed lightweight self-supervised depth estimation model, RENA-Depth, outperforms the most advanced lightweight depth detection algorithms, confirming its efficacy and innovation in improving depth prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ahai完成签到 ,获得积分10
2秒前
homer完成签到,获得积分10
3秒前
懦弱的吐司完成签到 ,获得积分10
4秒前
银色的喵咪完成签到,获得积分10
4秒前
52cc000应助耶斯采纳,获得10
4秒前
Hey发布了新的文献求助10
5秒前
5秒前
小康完成签到 ,获得积分10
8秒前
9秒前
Dushine完成签到 ,获得积分10
9秒前
Owen应助斯文绿凝采纳,获得10
10秒前
10秒前
11秒前
12秒前
上官若男应助qiqi采纳,获得10
13秒前
无月完成签到 ,获得积分10
13秒前
科研通AI2S应助smallant采纳,获得30
14秒前
008完成签到 ,获得积分10
15秒前
胡不言发布了新的文献求助10
16秒前
龚仕杰完成签到 ,获得积分10
20秒前
缓慢的语蕊完成签到 ,获得积分10
22秒前
xiaoding应助lilililili采纳,获得30
22秒前
颜沛文发布了新的文献求助10
23秒前
英俊的铭应助林青伟采纳,获得10
23秒前
23秒前
24秒前
huhuhu完成签到,获得积分10
26秒前
胡不言发布了新的文献求助10
28秒前
29秒前
30秒前
ddd发布了新的文献求助10
32秒前
顾矜应助11采纳,获得10
32秒前
33秒前
ll发布了新的文献求助10
35秒前
35秒前
搜集达人应助颜沛文采纳,获得10
36秒前
会撒娇的含巧完成签到,获得积分10
37秒前
MgO关闭了MgO文献求助
37秒前
爱看文章的我完成签到 ,获得积分10
40秒前
NexusExplorer应助欧阳宇采纳,获得10
40秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150394
求助须知:如何正确求助?哪些是违规求助? 2801510
关于积分的说明 7845179
捐赠科研通 2459074
什么是DOI,文献DOI怎么找? 1308905
科研通“疑难数据库(出版商)”最低求助积分说明 628583
版权声明 601727