RENA-Depth: toward recursion representation enhancement in neighborhood attention guided lightweight self-supervised monocular depth estimation

计算机科学 单眼 递归(计算机科学) 人工智能 代表(政治) 计算机视觉 估计 计算机图形学(图像) 算法 政治学 政治 经济 管理 法学
作者
Chaochao Yang,Yuanyao Lu,Yongsheng Qiu,Yuantao Wang
出处
期刊:Optical Engineering [SPIE - International Society for Optical Engineering]
卷期号:63 (08)
标识
DOI:10.1117/1.oe.63.8.088103
摘要

Although self-supervised depth estimation models based on transformers have achieved success, lightweight depth prediction networks exhibit a particularly pronounced issue with depth prediction blurriness at object boundaries compared to standard depth prediction networks. We found that this problem arises from the token dimension constraints, which limit the precise representation of semantic and spatial information. To address this challenge, we introduce a lightweight monocular self-supervised depth estimation network, RENA-Depth, which leverages convolutional neural network neighborhood attention-guided recursive Transformers to enhance depth estimation precision. Specifically, the design begins with the introduction of neighborhood adaptive attention (NA), which focuses on local and regional scales. This component adaptively mines latent semantic and spatial information from the neighborhoods of the input features of self-attention. Subsequently, a global feature recursive interaction module was developed to recursively refine the interaction between local and global information, enhancing the representation of semantic and spatial information without a significant increase in parameters. Finally, an attention equilibrium loss is proposed, which motivates richer semantic information representation and clarifies boundary depth by penalizing the orthogonality similarity of attention mechanisms. Extensive evaluations on the Karlsruhe Institute of Technology and Toyota Technological Institute and Make3D datasets have demonstrated that the proposed lightweight self-supervised depth estimation model, RENA-Depth, outperforms the most advanced lightweight depth detection algorithms, confirming its efficacy and innovation in improving depth prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个大花瓶完成签到 ,获得积分10
1秒前
柳叶完成签到,获得积分10
1秒前
imchenyin完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
Hongtao完成签到 ,获得积分10
5秒前
情怀应助朴实的山灵采纳,获得10
5秒前
5秒前
邓凯月完成签到,获得积分10
6秒前
agility完成签到,获得积分10
6秒前
小马甲应助lxy采纳,获得10
6秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
核桃发布了新的文献求助10
9秒前
Quhang完成签到,获得积分10
11秒前
lxy完成签到,获得积分20
12秒前
12秒前
清风发布了新的文献求助10
13秒前
MCY发布了新的文献求助10
13秒前
屁颠小豪完成签到,获得积分10
14秒前
14秒前
15秒前
SciGPT应助静宝采纳,获得10
16秒前
人走茶凉发布了新的文献求助10
17秒前
爆米花应助jtyt采纳,获得10
18秒前
在水一方应助111采纳,获得10
19秒前
20秒前
桐桐应助一只可爱壳采纳,获得10
20秒前
旦丁洋完成签到,获得积分10
21秒前
呆萌的秋天完成签到,获得积分10
21秒前
23秒前
无极微光应助旦丁洋采纳,获得20
24秒前
小安完成签到,获得积分10
24秒前
lxy发布了新的文献求助10
27秒前
伤心猪大肠完成签到,获得积分10
27秒前
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742484
求助须知:如何正确求助?哪些是违规求助? 5408853
关于积分的说明 15345143
捐赠科研通 4883750
什么是DOI,文献DOI怎么找? 2625301
邀请新用户注册赠送积分活动 1574150
关于科研通互助平台的介绍 1531084