RENA-Depth: toward recursion representation enhancement in neighborhood attention guided lightweight self-supervised monocular depth estimation

计算机科学 单眼 递归(计算机科学) 人工智能 代表(政治) 计算机视觉 估计 计算机图形学(图像) 算法 政治学 政治 经济 管理 法学
作者
Chaochao Yang,Yuanyao Lu,Yongsheng Qiu,Yuantao Wang
出处
期刊:Optical Engineering [SPIE - International Society for Optical Engineering]
卷期号:63 (08)
标识
DOI:10.1117/1.oe.63.8.088103
摘要

Although self-supervised depth estimation models based on transformers have achieved success, lightweight depth prediction networks exhibit a particularly pronounced issue with depth prediction blurriness at object boundaries compared to standard depth prediction networks. We found that this problem arises from the token dimension constraints, which limit the precise representation of semantic and spatial information. To address this challenge, we introduce a lightweight monocular self-supervised depth estimation network, RENA-Depth, which leverages convolutional neural network neighborhood attention-guided recursive Transformers to enhance depth estimation precision. Specifically, the design begins with the introduction of neighborhood adaptive attention (NA), which focuses on local and regional scales. This component adaptively mines latent semantic and spatial information from the neighborhoods of the input features of self-attention. Subsequently, a global feature recursive interaction module was developed to recursively refine the interaction between local and global information, enhancing the representation of semantic and spatial information without a significant increase in parameters. Finally, an attention equilibrium loss is proposed, which motivates richer semantic information representation and clarifies boundary depth by penalizing the orthogonality similarity of attention mechanisms. Extensive evaluations on the Karlsruhe Institute of Technology and Toyota Technological Institute and Make3D datasets have demonstrated that the proposed lightweight self-supervised depth estimation model, RENA-Depth, outperforms the most advanced lightweight depth detection algorithms, confirming its efficacy and innovation in improving depth prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haaay发布了新的文献求助10
刚刚
刚刚
猪猪hero发布了新的文献求助30
1秒前
扶丽君完成签到,获得积分10
1秒前
Owen应助书桃采纳,获得30
2秒前
华北走地鸡完成签到,获得积分10
2秒前
科研通AI2S应助牛与马采纳,获得10
2秒前
yiannanan完成签到 ,获得积分10
2秒前
3秒前
3秒前
orixero应助Strider采纳,获得10
3秒前
3秒前
tdtk发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
江月年发布了新的文献求助10
4秒前
科研通AI6应助啊o采纳,获得10
4秒前
韦如发布了新的文献求助100
5秒前
量子星尘发布了新的文献求助10
5秒前
璇璇璇璇完成签到,获得积分20
5秒前
6秒前
陈楷完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
uncleroot完成签到,获得积分10
9秒前
Owen应助Linda00采纳,获得10
9秒前
9秒前
10秒前
吃人不眨眼应助mingxwang采纳,获得20
10秒前
zoukaixiong发布了新的文献求助10
11秒前
11秒前
11秒前
猪猪hero发布了新的文献求助30
12秒前
12秒前
Legno完成签到,获得积分10
12秒前
zwy109完成签到 ,获得积分10
13秒前
gjjsdajh完成签到,获得积分20
13秒前
英姑应助nmamtf采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675