计算机科学
编码器
分割
人工智能
事件(粒子物理)
模式识别(心理学)
计算机视觉
物理
量子力学
操作系统
作者
Rui Zhang,Luziwei Leng,Kaiwei Che,Hu Zhang,Jie Cheng,Qinghai Guo,Jianxing Liao,Ran Cheng
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3437415
摘要
Spiking neural networks (SNNs), known for their low-power, event-driven computation, and intrinsic temporal dynamics, are emerging as promising solutions for processing dynamic, asynchronous signals from event-based sensors. Despite their potential, SNNs face challenges in training and architectural design, resulting in limited performance in challenging event-based dense prediction tasks compared with artificial neural networks (ANNs). In this work, we develop an efficient spiking encoder-decoder network (SpikingEDN) for large-scale event-based semantic segmentation (EbSS) tasks. To enhance the learning efficiency from dynamic event streams, we harness the adaptive threshold which improves network accuracy, sparsity, and robustness in streaming inference. Moreover, we develop a dual-path spiking spatially adaptive modulation (SSAM) module, which is specifically tailored to enhance the representation of sparse events and multimodal inputs, thereby considerably improving network performance. Our SpikingEDN attains a mean intersection over union (MIoU) of 72.57% on the DDD17 dataset and 58.32% on the larger DSEC-Semantic dataset, showing competitive results to the state-of-the-art ANNs while requiring substantially fewer computational resources. Our results shed light on the untapped potential of SNNs in event-based vision applications. The source codes are publicly available at https://github.com/EMI-Group/spikingedn.
科研通智能强力驱动
Strongly Powered by AbleSci AI