亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Phosphorus and Oxygen Co-doping Inducing Surface Defects of Carbon Nanospheres to Enhance the Catalytic Performance for Two-Electron Oxygen Reduction Reaction

催化作用 选择性 化学 过氧化氢 氧气 吸附 电化学 碳纤维 兴奋剂 无机化学 化学工程 材料科学 有机化学 电极 光电子学 物理化学 复合数 工程类 复合材料
作者
Lu Qiu,Xiangrui Feng,Yu Song,Shulong Li,Yue Qu,Xiaoqin Li,Taotao Gao,Dan Xiao
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:63 (36): 15912-15919
标识
DOI:10.1021/acs.iecr.4c02365
摘要

Electrochemical oxygen reduction reaction (ORR) is a promising alternative to the conventional anthraquinone oxidation process, with high energy consumption and massive pollutant discharge, for hydrogen peroxide (H2O2) production. However, improving the selectivity of two-electron (2e–) ORR toward H2O2 remains a large challenge. Here, a simple and scalable P, O-codoped strategy is proposed to improve the catalytic activity and H2O2 selectivity of the low-cost carbon nanospheres (P-O-CNS). The optimal O and P contents and abundant defects make P-O-CNS-800 obtain the highest selectivity for H2O2 (95.47% at 0.580 V vs RHE), greatly superior to those of the initial O-CNS (75.74%) and other P-O-CNS samples with low doping content. The theoretical investigation further reveals the synergistic effect of doped P and defect structures optimizing the adsorption of *OOH on the active sites near the oxygen-containing functional group as the reason for the enhanced 2e– ORR catalytic activity. This study offers comprehensive insight into the regulating mechanism of the carbon structures with multiheteroatom doping for improved ORR activity as well as H2O2 selectivity and then provides more possibilities for the rational regulation of catalysts to obtain a high-efficiency catalytic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饭团不吃鱼完成签到,获得积分10
4秒前
ceeray23应助科研通管家采纳,获得10
11秒前
ceeray23应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
ceeray23应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
炙热的雪糕完成签到,获得积分10
14秒前
gbb发布了新的文献求助10
16秒前
LXZ发布了新的文献求助10
19秒前
willlee完成签到 ,获得积分10
19秒前
20秒前
22秒前
脑洞疼应助哈皮波采纳,获得10
23秒前
世良发布了新的文献求助10
28秒前
28秒前
gbb完成签到,获得积分10
28秒前
体贴花卷发布了新的文献求助10
31秒前
ddddddd完成签到 ,获得积分10
32秒前
35秒前
37秒前
哈皮波发布了新的文献求助10
38秒前
暖暖完成签到,获得积分10
40秒前
哈皮波完成签到,获得积分10
49秒前
51秒前
西安浴日光能赵炜完成签到,获得积分10
51秒前
55秒前
搜集达人应助体贴花卷采纳,获得10
56秒前
1分钟前
科研通AI6应助xiaozhou采纳,获得10
1分钟前
Lifel完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ava应助xiaozhou采纳,获得10
1分钟前
山雨微凉发布了新的文献求助10
1分钟前
沉静的安青完成签到,获得积分10
1分钟前
2分钟前
科研通AI6应助山雨微凉采纳,获得10
2分钟前
体贴花卷发布了新的文献求助10
2分钟前
Ava应助世良采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399