Metabolomics Unveils Disrupted Pathways in Parkinson’s Disease: Toward Biomarker-Based Diagnosis

代谢组学 生物标志物 生物标志物发现 疾病 帕金森病 医学 计算生物学 可解释性 生物信息学 机器学习 神经科学 蛋白质组学 化学 生物 生物化学 计算机科学 内科学 基因
作者
Wanderleya T. Santos,Albert Katchborian‐Neto,Gabriel da Silva Viana,Miller Santos Ferreira,Luiza C. Martins,Thiago Cardoso Vale,Michael Murgu,Danielle Ferreira Dias,Marisi G. Soares,Daniela Aparecida Chagas‐Paula,Ana Paula
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:15 (17): 3168-3180 被引量:2
标识
DOI:10.1021/acschemneuro.4c00355
摘要

Parkinson's disease (PD) is a neurodegenerative disorder characterized by diverse symptoms, where accurate diagnosis remains challenging. Traditional clinical observation methods often result in misdiagnosis, highlighting the need for biomarker-based diagnostic approaches. This study utilizes ultraperformance liquid chromatography coupled to an electrospray ionization source and quadrupole time-of-flight untargeted metabolomics combined with biochemometrics to identify novel serum biomarkers for PD. Analyzing a Brazilian cohort of serum samples from 39 PD patients and 15 healthy controls, we identified 15 metabolites significantly associated with PD, with 11 reported as potential biomarkers for the first time. Key disrupted metabolic pathways include caffeine metabolism, arachidonic acid metabolism, and primary bile acid biosynthesis. Our machine learning model demonstrated high accuracy, with the Rotation Forest boosting model achieving 94.1% accuracy in distinguishing PD patients from controls. It is based on three new PD biomarkers (downregulated: 1-lyso-2-arachidonoyl-phosphatidate and hypoxanthine and upregulated: ferulic acid) and surpasses the general 80% diagnostic accuracy obtained from initial clinical evaluations conducted by specialists. Besides, this machine learning model based on a decision tree allowed for visual and easy interpretability of affected metabolites in PD patients. These findings could improve the detection and monitoring of PD, paving the way for more precise diagnostics and therapeutic interventions. Our research emphasizes the critical role of metabolomics and machine learning in advancing our understanding of the chemical profile of neurodegenerative diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nPoWNL完成签到,获得积分10
1秒前
1秒前
66ds发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
4秒前
4秒前
yao完成签到,获得积分10
5秒前
hkh发布了新的文献求助10
6秒前
成太发布了新的文献求助10
6秒前
Cody完成签到,获得积分10
6秒前
byw07完成签到 ,获得积分10
6秒前
7秒前
FashionBoy应助1+1采纳,获得10
7秒前
7秒前
wutianbao发布了新的文献求助10
8秒前
于于发布了新的文献求助10
9秒前
缓慢的驳完成签到,获得积分10
9秒前
塵埃发布了新的文献求助15
9秒前
多模态小生完成签到,获得积分10
10秒前
黑羊完成签到,获得积分10
10秒前
艺术家脾气完成签到,获得积分10
10秒前
英姑应助小鱼在草里采纳,获得30
10秒前
yunxing1212完成签到,获得积分10
11秒前
11秒前
12秒前
3301完成签到,获得积分10
12秒前
luiii完成签到,获得积分10
13秒前
ly发布了新的文献求助10
13秒前
Endeavor完成签到,获得积分10
13秒前
实验好难应助Long采纳,获得20
14秒前
伯赏迎松完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
Jason完成签到,获得积分10
15秒前
16秒前
是的发放完成签到,获得积分20
16秒前
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735079
求助须知:如何正确求助?哪些是违规求助? 3278971
关于积分的说明 10012522
捐赠科研通 2995555
什么是DOI,文献DOI怎么找? 1643499
邀请新用户注册赠送积分活动 781304
科研通“疑难数据库(出版商)”最低求助积分说明 749351