CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent

计算机科学 推荐系统 对抗制 强化学习 人工智能 脆弱性(计算) 机器学习 计算机安全
作者
Liangbo Ning,Shijie Wang,Wenqi Fan,Qing Li,Xu Xin,Hao Chen,Feiran Huang
标识
DOI:10.1145/3637528.3671837
摘要

Recently, Large Language Model (LLM)-empowered recommender systems (RecSys) have brought significant advances in personalized user experience and have attracted considerable attention. Despite the impressive progress, the research question regarding the safety vulnerability of LLM-empowered RecSys still remains largely under-investigated. Given the security and privacy concerns, it is more practical to focus on attacking the black-box RecSys, where attackers can only observe the system's inputs and outputs. However, traditional attack approaches employing reinforcement learning (RL) agents are not effective for attacking LLM-empowered RecSys due to the limited capabilities in processing complex textual inputs, planning, and reasoning. On the other hand, LLMs provide unprecedented opportunities to serve as attack agents to attack RecSys because of their impressive capability in simulating human-like decision-making processes. Therefore, in this paper, we propose a novel attack framework called CheatAgent by harnessing the human-like capabilities of LLMs, where an LLM-based agent is developed to attack LLM-Empowered RecSys. Specifically, our method first identifies the insertion position for maximum impact with minimal input modification. After that, the LLM agent is designed to generate adversarial perturbations to insert at target positions. To further improve the quality of generated perturbations, we utilize the prompt tuning technique to improve attacking strategies via feedback from the victim RecSys iteratively. Extensive experiments across three real-world datasets demonstrate the effectiveness of our proposed attacking method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马发布了新的文献求助10
1秒前
英俊清涟完成签到,获得积分10
1秒前
狼牙发布了新的文献求助10
2秒前
younger完成签到,获得积分10
4秒前
lg2发布了新的文献求助10
4秒前
小白大当家完成签到,获得积分10
5秒前
5秒前
loricae2005完成签到,获得积分10
6秒前
11秒前
mei的科研小院子完成签到,获得积分10
11秒前
在水一方应助wuyongmei采纳,获得10
12秒前
伶俜完成签到,获得积分10
12秒前
13秒前
酷炫觅松发布了新的文献求助10
14秒前
伶俜发布了新的文献求助10
15秒前
15秒前
17秒前
19秒前
19秒前
ding应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
20秒前
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
dhjmnb完成签到,获得积分10
20秒前
20秒前
21秒前
果冻儿发布了新的文献求助10
23秒前
紫鸢发布了新的文献求助10
24秒前
24秒前
弱水三千发布了新的文献求助10
24秒前
25秒前
深情安青应助lg2采纳,获得10
25秒前
可爱的函函应助wuyongmei采纳,获得10
25秒前
夏雪冬花发布了新的文献求助10
26秒前
26秒前
平淡的恋风完成签到,获得积分10
26秒前
lcx发布了新的文献求助10
28秒前
斯文香彤完成签到,获得积分10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3321819
求助须知:如何正确求助?哪些是违规求助? 2953110
关于积分的说明 8564033
捐赠科研通 2630614
什么是DOI,文献DOI怎么找? 1439256
科研通“疑难数据库(出版商)”最低求助积分说明 667057
邀请新用户注册赠送积分活动 653495