已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent

计算机科学 推荐系统 对抗制 强化学习 人工智能 脆弱性(计算) 机器学习 计算机安全
作者
Liangbo Ning,Shijie Wang,Wenqi Fan,Qing Li,Xu Xin,Hao Chen,Feiran Huang
标识
DOI:10.1145/3637528.3671837
摘要

Recently, Large Language Model (LLM)-empowered recommender systems (RecSys) have brought significant advances in personalized user experience and have attracted considerable attention. Despite the impressive progress, the research question regarding the safety vulnerability of LLM-empowered RecSys still remains largely under-investigated. Given the security and privacy concerns, it is more practical to focus on attacking the black-box RecSys, where attackers can only observe the system's inputs and outputs. However, traditional attack approaches employing reinforcement learning (RL) agents are not effective for attacking LLM-empowered RecSys due to the limited capabilities in processing complex textual inputs, planning, and reasoning. On the other hand, LLMs provide unprecedented opportunities to serve as attack agents to attack RecSys because of their impressive capability in simulating human-like decision-making processes. Therefore, in this paper, we propose a novel attack framework called CheatAgent by harnessing the human-like capabilities of LLMs, where an LLM-based agent is developed to attack LLM-Empowered RecSys. Specifically, our method first identifies the insertion position for maximum impact with minimal input modification. After that, the LLM agent is designed to generate adversarial perturbations to insert at target positions. To further improve the quality of generated perturbations, we utilize the prompt tuning technique to improve attacking strategies via feedback from the victim RecSys iteratively. Extensive experiments across three real-world datasets demonstrate the effectiveness of our proposed attacking method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
bji完成签到,获得积分10
3秒前
5秒前
zhxq完成签到,获得积分10
5秒前
烟花应助vikoer采纳,获得30
7秒前
Amin完成签到,获得积分10
7秒前
Guoqiang发布了新的文献求助30
8秒前
韩雨桐完成签到,获得积分10
8秒前
shooin完成签到,获得积分10
8秒前
雪白的千雁完成签到 ,获得积分10
10秒前
香蕉觅云应助刘耀文女友采纳,获得10
10秒前
11秒前
wbh发布了新的文献求助10
12秒前
NexusExplorer应助zhxq采纳,获得10
13秒前
笨笨迎南完成签到,获得积分10
14秒前
星希完成签到 ,获得积分10
16秒前
17秒前
黯然完成签到 ,获得积分10
19秒前
jjj发布了新的文献求助10
20秒前
Augenstern完成签到,获得积分10
22秒前
25秒前
27秒前
小杨子完成签到 ,获得积分10
28秒前
大模型应助Amin采纳,获得10
29秒前
AbeleChuang完成签到,获得积分10
31秒前
32秒前
36秒前
37秒前
40秒前
41秒前
41秒前
陶醉海燕发布了新的文献求助10
41秒前
43秒前
iNk应助PSCs采纳,获得20
43秒前
sunshinegirl发布了新的文献求助10
45秒前
吉恩发布了新的文献求助10
45秒前
辣椒发布了新的文献求助10
46秒前
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994330
求助须知:如何正确求助?哪些是违规求助? 3534764
关于积分的说明 11266452
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749