CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent

计算机科学 推荐系统 对抗制 强化学习 人工智能 脆弱性(计算) 机器学习 计算机安全
作者
Liangbo Ning,Shijie Wang,Wenqi Fan,Qing Li,Xu Xin,Hao Chen,Feiran Huang
标识
DOI:10.1145/3637528.3671837
摘要

Recently, Large Language Model (LLM)-empowered recommender systems (RecSys) have brought significant advances in personalized user experience and have attracted considerable attention. Despite the impressive progress, the research question regarding the safety vulnerability of LLM-empowered RecSys still remains largely under-investigated. Given the security and privacy concerns, it is more practical to focus on attacking the black-box RecSys, where attackers can only observe the system's inputs and outputs. However, traditional attack approaches employing reinforcement learning (RL) agents are not effective for attacking LLM-empowered RecSys due to the limited capabilities in processing complex textual inputs, planning, and reasoning. On the other hand, LLMs provide unprecedented opportunities to serve as attack agents to attack RecSys because of their impressive capability in simulating human-like decision-making processes. Therefore, in this paper, we propose a novel attack framework called CheatAgent by harnessing the human-like capabilities of LLMs, where an LLM-based agent is developed to attack LLM-Empowered RecSys. Specifically, our method first identifies the insertion position for maximum impact with minimal input modification. After that, the LLM agent is designed to generate adversarial perturbations to insert at target positions. To further improve the quality of generated perturbations, we utilize the prompt tuning technique to improve attacking strategies via feedback from the victim RecSys iteratively. Extensive experiments across three real-world datasets demonstrate the effectiveness of our proposed attacking method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jack发布了新的文献求助10
刚刚
落羽完成签到,获得积分10
刚刚
星辰大海应助张富贵采纳,获得10
1秒前
望向天空的鱼完成签到 ,获得积分10
1秒前
3秒前
GPTea完成签到,获得积分0
4秒前
我爱科研发布了新的文献求助30
4秒前
年年发布了新的文献求助10
4秒前
cml发布了新的文献求助10
5秒前
英姑应助yundanli采纳,获得10
5秒前
田様应助愉快书琴采纳,获得10
5秒前
桐桐应助Jack采纳,获得10
5秒前
热情礼貌一问三不知完成签到 ,获得积分10
7秒前
好的呢完成签到,获得积分10
8秒前
xz发布了新的文献求助10
9秒前
廖思巧发布了新的文献求助10
10秒前
10秒前
10秒前
无花果应助Condor采纳,获得10
10秒前
科研通AI6.1应助Bo采纳,获得10
11秒前
12秒前
14秒前
14秒前
852应助pamela采纳,获得10
15秒前
我爱科研完成签到,获得积分10
15秒前
16秒前
Ssr发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
cml完成签到,获得积分20
18秒前
gggghhhh完成签到 ,获得积分10
18秒前
机灵水卉发布了新的文献求助10
18秒前
zifeimo发布了新的文献求助10
18秒前
Redemption发布了新的文献求助10
19秒前
Ava应助仁爱行云采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735678
求助须知:如何正确求助?哪些是违规求助? 5361982
关于积分的说明 15330919
捐赠科研通 4879862
什么是DOI,文献DOI怎么找? 2622363
邀请新用户注册赠送积分活动 1571343
关于科研通互助平台的介绍 1528175