Chloride-Ion-Enriched Solid Electrolyte Interphase with Rapid Na+ Migration toward High-Performance Sodium-Ion Batteries

化学 电解质 相间 离子 无机化学 氯化物 电极 有机化学 物理化学 生物 遗传学
作者
Qian Wang,Chengxin Liu,Fan Zhang,Xinyuan Wang,Hui Wang,Le Yu,Xiaojie Liu
出处
期刊:Inorganic Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.inorgchem.4c03240
摘要

Sodium-ion batteries (SIBs) have emerged as potential alternatives to lithium-ion batteries (LIBs), particularly for large-scale applications. Alloy-type anode materials for sodium-ion batteries are esteemed as prospective candidate materials for sodium-ion anodes, owing to their elevated theoretical capacity, heightened utilization efficiency, and minimal production of insulating byproducts. However, the severe volume changes and sluggish ion diffusion kinetics can lead to irreversible particle fragmentation and reaggregation phenomena, ultimately resulting in electrode degradation. Additionally, repetitive volume changes can cause an unstable solid electrolyte interphase (SEI). This study presents the synthesis of chloride-ion-modulated bimetallic SnSb/C nanoparticle anode materials, highlighting the following advantages: (i) Designing a bimetallic SnSb alloy structure serves to buffer the structural stresses generated during sodium insertion/extraction processes, effectively mitigating particle fracture phenomena induced by electrode material expansion/contraction. (ii) Nanostructuring both alloy materials enables the full utilization of active materials and shortens diffusion pathways, thereby significantly enhancing the diffusion rate of sodium ions. (iii) Introducing a carbonaceous matrix serves to alleviate self-agglomeration phenomena of the material during charge/discharge cycles, enhancing the material's conductivity and structural stability. (iv) Utilizing chloride-ion interface modification to achieve a chloride-rich solid-electrolyte interphase (SEI) enhances battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
费凝海发布了新的文献求助10
刚刚
2秒前
3秒前
3秒前
忐忑的愫完成签到,获得积分10
3秒前
香蕉觅云应助专注的谷梦采纳,获得30
3秒前
Forever发布了新的文献求助10
4秒前
科研通AI2S应助GEZI采纳,获得10
6秒前
7秒前
诚c发布了新的文献求助10
7秒前
Dean发布了新的文献求助10
8秒前
9秒前
qww关闭了qww文献求助
11秒前
魔幻的寒松完成签到,获得积分10
11秒前
纯真含灵完成签到,获得积分10
12秒前
13秒前
14秒前
16秒前
喻鞅完成签到,获得积分10
16秒前
可爱的函函应助刘雯采纳,获得10
16秒前
觉皇发布了新的文献求助10
16秒前
17秒前
17秒前
舒物发布了新的文献求助10
17秒前
18秒前
小蘑菇应助Dr.Joseph采纳,获得10
19秒前
20秒前
GEZI发布了新的文献求助10
21秒前
今天真暖发布了新的文献求助10
21秒前
nefu biology发布了新的文献求助10
22秒前
jstagey发布了新的文献求助10
23秒前
我是老大应助温暖静柏采纳,获得10
23秒前
guozizi发布了新的文献求助10
23秒前
24秒前
深情的路灯完成签到,获得积分10
25秒前
26秒前
26秒前
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455021
求助须知:如何正确求助?哪些是违规求助? 3050304
关于积分的说明 9020908
捐赠科研通 2738923
什么是DOI,文献DOI怎么找? 1502343
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693191