Gas sensors convert gas-related information into usable data by monitoring changes in conductivity and chemical reactions resulting from the adsorption of gas molecules. Recently, perovskites have emerged as promising candidate materials for gas sensors, owing to their polar reactivity, chemical responsiveness, and sensitivity. These characteristics enable the detection of the presence and concentration of various gases. This article provides a concise review of recent advancements in perovskite-based gas sensors. First, the chemical composition, structure, and preparation methods of perovskites, as well as the effects of their structure on gas sensing performance, are examined. The key performance parameters of the sensor and the sensing mechanism of the perovskite-based gas sensor are discussed. Then the development of gas sensors based on different structural types of perovskites, including single-component perovskites, mixed-component perovskites, and metal-oxide perovskites, is discussed. Finally, the challenges and opportunities for gas sensors based on perovskites are summarized and prospected.