On the design space between molecular mechanics and machine learning force fields

分子力学 空格(标点符号) 力场(虚构) 经典力学 计算机科学 物理 人工智能 分子动力学 量子力学 操作系统
作者
Yuanqing Wang,Kenichiro Takaba,Michael S. Chen,Marcus Wieder,Yuzhi Xu,Tong Zhu,John Z. H. Zhang,Arnav M. Nagle,Yu Kuang,Xinyan Wang,D. J. A. Cole,Joshua A. Rackers,Kyunghyun Cho,Joe G. Greener,Peter Eastman,Stefano Martiniani,Mark E. Tuckerman
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2409.01931
摘要

A force field as accurate as quantum mechanics (QM) and as fast as molecular mechanics (MM), with which one can simulate a biomolecular system efficiently enough and meaningfully enough to get quantitative insights, is among the most ardent dreams of biophysicists -- a dream, nevertheless, not to be fulfilled any time soon. Machine learning force fields (MLFFs) represent a meaningful endeavor towards this direction, where differentiable neural functions are parametrized to fit ab initio energies, and furthermore forces through automatic differentiation. We argue that, as of now, the utility of the MLFF models is no longer bottlenecked by accuracy but primarily by their speed (as well as stability and generalizability), as many recent variants, on limited chemical spaces, have long surpassed the chemical accuracy of $1$ kcal/mol -- the empirical threshold beyond which realistic chemical predictions are possible -- though still magnitudes slower than MM. Hoping to kindle explorations and designs of faster, albeit perhaps slightly less accurate MLFFs, in this review, we focus our attention on the design space (the speed-accuracy tradeoff) between MM and ML force fields. After a brief review of the building blocks of force fields of either kind, we discuss the desired properties and challenges now faced by the force field development community, survey the efforts to make MM force fields more accurate and ML force fields faster, envision what the next generation of MLFF might look like.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强哥发布了新的文献求助10
刚刚
刚刚
松松松发布了新的文献求助30
1秒前
ZML完成签到,获得积分10
1秒前
张宝完成签到,获得积分10
2秒前
如意以晴完成签到,获得积分20
2秒前
科学怪人鲨鱼辣椒完成签到,获得积分10
5秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
ZML发布了新的文献求助10
6秒前
小菜鸟001应助科研通管家采纳,获得10
6秒前
tramp应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得50
6秒前
6秒前
6秒前
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
7秒前
Great小飞侠完成签到,获得积分10
9秒前
留言完成签到,获得积分10
10秒前
cdercder应助心楠采纳,获得20
11秒前
12秒前
魔真人发布了新的文献求助10
17秒前
热情的花瓣完成签到 ,获得积分10
18秒前
18秒前
Lucas应助长期素食采纳,获得10
20秒前
WJ发布了新的文献求助10
21秒前
21秒前
张琳完成签到 ,获得积分10
21秒前
22秒前
科研通AI5应助玄月繁星采纳,获得10
23秒前
星辰大海应助嘟嘟嘟采纳,获得10
25秒前
司空晋鹏发布了新的文献求助10
26秒前
完美世界应助魔真人采纳,获得10
27秒前
彭于晏应助可靠招牌采纳,获得10
28秒前
高分求助中
Generic and Innovator Drugs: A Guide to Fda Approval Requirements 500
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707881
求助须知:如何正确求助?哪些是违规求助? 3256404
关于积分的说明 9900173
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628253
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611