Large language models management of complex medication regimens: a case-based evaluation

计算机科学 重症监护医学 自然语言处理 医学
作者
Steven Xu,Amoreena Most,Aaron Chase,Tanner Hedrick,Brian Murray,Kelli Keats,Susan Smith,Erin Barreto,Tianming Liu,Andrea Sikora
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.07.03.24309889
摘要

Abstract Background Large language models (LLMs) have shown capability in diagnosing complex medical cases and passing medical licensing exams, but to date, only limited evaluations have studied how LLMs interpret, analyze, and optimize complex medication regimens. The purpose of this evaluation was to test four LLMs ability to identify medication errors and appropriate medication interventions on complex patient cases from the intensive care unit (ICU). Methods A series of eight patient cases were developed by critical care pharmacists including history of present illness, laboratory values, vital signs, and medication regimens. Then, four LLMs (ChatGPT (GPT-3.5), ChatGPT (GPT-4), Claude2, and Llama2-7b) were prompted to develop a medication regimen for the patient. LLM generated medication regimens were then reviewed by a panel of seven critical care pharmacists to assess for presence of medication errors and clinical relevance. For each medication regimen recommended by the LLM, clinicians were asked to assess for if they would continue a medication, identify perceived medication errors in the medications recommended, identify the presence of life-threatening medication choices, and rank overall agreement on a 5-point Likert scale. Results The clinician panel rated to continue therapies recommended by the LLMs between 55.8-67.9% of the time. Clinicians perceived between 1.57-4.29 medication errors per recommended regimen, and life-threatening recommendations were present between 15.0-55.3% of the time. Level agreement was between 1.85-2.67 for the four LLMs. Conclusions LLMs demonstrated potential to serve as clinical decision support for the management of complex medication regimens with further domain specific training; however, caution should be used when employing LLMs for medication management given the present capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
licheng完成签到,获得积分10
1秒前
浅尝离白应助科研通管家采纳,获得20
1秒前
酷波er应助科研通管家采纳,获得200
1秒前
打打应助科研通管家采纳,获得50
1秒前
跳跃仙人掌应助加菲丰丰采纳,获得30
2秒前
慕青应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
青辞198完成签到 ,获得积分10
2秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得30
2秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Hello应助19采纳,获得200
3秒前
3秒前
sunshine应助zcz采纳,获得10
3秒前
丁小丁发布了新的文献求助10
4秒前
123456完成签到,获得积分10
4秒前
5秒前
Nick发布了新的文献求助10
6秒前
浮尘完成签到,获得积分10
6秒前
6秒前
犹豫的亦云完成签到,获得积分10
6秒前
安笙凉城完成签到 ,获得积分10
7秒前
谷粱紫槐完成签到,获得积分10
7秒前
MorningStar发布了新的文献求助10
7秒前
田田发布了新的文献求助10
7秒前
Takitorin发布了新的文献求助10
7秒前
xuanxuan发布了新的文献求助10
8秒前
9秒前
11秒前
开朗怀蝶完成签到,获得积分10
11秒前
bkagyin应助郁李采纳,获得10
11秒前
11秒前
小鹿发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945312
关于积分的说明 8524570
捐赠科研通 2621088
什么是DOI,文献DOI怎么找? 1433321
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650325