Discovery of quality markers of Phyllanthus emblica by integrating chromatographic fingerprint, serum pharmacochemistry and network pharmacology

化学 余甘子 指纹(计算) 色谱法 传统医学 药理学 人工智能 医学 计算机科学
作者
Yihan Xu,Juan Chen
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:249: 116346-116346 被引量:2
标识
DOI:10.1016/j.jpba.2024.116346
摘要

Phyllanthus emblica (P. emblica) is a vital medicinal plant with both medical and edible values. In the quality standard of P. emblica listed by the Chinese Pharmacopoeia, gallic acid is used as the index component for the content determination. However, a large number of tannin components can be decomposed into gallic acid during its refluxing extraction process, thus affecting the accuracy and specificity of the content determination. Thus, the index component used for the quality control needs to be further determined. In this study, the quality markers of P. emblica was specified by integrating chromatographic fingerprint, serum pharmacochemistry and network pharmacology. The chromatographic fingerprint of 18 batches of P. emblica samples were established by ultra-high-performance liquid chromatography (UPLC), and 8 differential components causing quality fluctuation were identified by chemometric analysis and UPLC-Q-TOF/MS analysis. Afterwards, 14 prototype migration components absorbed into the blood after gavage administration to rats were identified by UPLC-Q-TOF/MS analysis. Subsequently, a network pharmacology approach was used to construct the component-target-disease-pathway network, resulting in the identification of 22 components responsible for efficacy of P. emblica. Finally, by integrating the above results, ellagic acid was screened out as one of the Q-markers and could be employed as a quantitative component of P. emblica to improve the quality standard. The strategy is also informative for discovering Q-markers of other TCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huoo完成签到,获得积分10
刚刚
刚刚
leesc94应助入变采纳,获得20
1秒前
2秒前
汉堡包应助lyejxusgh采纳,获得10
3秒前
3秒前
3秒前
4秒前
闪闪明轩完成签到,获得积分20
4秒前
5秒前
cc完成签到,获得积分20
5秒前
,。完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
chy发布了新的文献求助10
7秒前
Isaac完成签到 ,获得积分10
7秒前
科研通AI6应助玉ER采纳,获得10
7秒前
8秒前
奶昔完成签到,获得积分10
8秒前
风笙完成签到,获得积分10
8秒前
9秒前
ysxl发布了新的文献求助10
9秒前
9秒前
白马非马完成签到 ,获得积分10
9秒前
天天快乐应助xiaotao采纳,获得30
10秒前
10秒前
深情安青应助chenluAccept采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
bkagyin应助Lylin采纳,获得10
11秒前
Ssss发布了新的文献求助10
13秒前
幼汁汁鬼鬼完成签到,获得积分10
13秒前
lzz完成签到,获得积分10
13秒前
黑翎完成签到 ,获得积分10
13秒前
LUJL发布了新的文献求助10
13秒前
Zcy发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027