Discovery of quality markers of Phyllanthus emblica by integrating chromatographic fingerprint, serum pharmacochemistry and network pharmacology

化学 余甘子 指纹(计算) 色谱法 传统医学 药理学 人工智能 医学 计算机科学
作者
Yihan Xu,Juan Chen
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:249: 116346-116346 被引量:2
标识
DOI:10.1016/j.jpba.2024.116346
摘要

Phyllanthus emblica (P. emblica) is a vital medicinal plant with both medical and edible values. In the quality standard of P. emblica listed by the Chinese Pharmacopoeia, gallic acid is used as the index component for the content determination. However, a large number of tannin components can be decomposed into gallic acid during its refluxing extraction process, thus affecting the accuracy and specificity of the content determination. Thus, the index component used for the quality control needs to be further determined. In this study, the quality markers of P. emblica was specified by integrating chromatographic fingerprint, serum pharmacochemistry and network pharmacology. The chromatographic fingerprint of 18 batches of P. emblica samples were established by ultra-high-performance liquid chromatography (UPLC), and 8 differential components causing quality fluctuation were identified by chemometric analysis and UPLC-Q-TOF/MS analysis. Afterwards, 14 prototype migration components absorbed into the blood after gavage administration to rats were identified by UPLC-Q-TOF/MS analysis. Subsequently, a network pharmacology approach was used to construct the component-target-disease-pathway network, resulting in the identification of 22 components responsible for efficacy of P. emblica. Finally, by integrating the above results, ellagic acid was screened out as one of the Q-markers and could be employed as a quantitative component of P. emblica to improve the quality standard. The strategy is also informative for discovering Q-markers of other TCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓟菏为衣完成签到,获得积分20
刚刚
1秒前
2秒前
老实天奇发布了新的文献求助10
2秒前
2秒前
3秒前
小马甲应助亭瞳采纳,获得10
3秒前
科研通AI5应助asADA采纳,获得10
3秒前
十一发布了新的文献求助10
3秒前
充电宝应助Xiaolingsmiling采纳,获得10
4秒前
ymj完成签到,获得积分10
4秒前
LMC发布了新的文献求助10
4秒前
科研通AI6应助Aliaoovo采纳,获得10
5秒前
含蓄戾发布了新的文献求助10
6秒前
7秒前
8秒前
一月发布了新的文献求助10
8秒前
9秒前
浮游应助hou采纳,获得10
10秒前
叶枫寒完成签到 ,获得积分10
10秒前
11秒前
wewe发布了新的文献求助10
11秒前
传奇3应助积极念波采纳,获得10
12秒前
GAW完成签到,获得积分10
12秒前
AAA问靠谱完成签到,获得积分10
12秒前
等DENG完成签到,获得积分10
12秒前
咖褐完成签到 ,获得积分10
13秒前
JUGG发布了新的文献求助10
14秒前
淡定自中发布了新的文献求助10
14秒前
14秒前
英俊的铭应助liuhao采纳,获得10
15秒前
15秒前
在水一方应助TristanGuan采纳,获得10
16秒前
17秒前
学术LJ完成签到,获得积分10
17秒前
九色可乐完成签到,获得积分10
18秒前
清秀豆芽发布了新的文献求助10
19秒前
20秒前
852应助老实天奇采纳,获得10
20秒前
科目三应助wewe采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195002
求助须知:如何正确求助?哪些是违规求助? 4377166
关于积分的说明 13631639
捐赠科研通 4232420
什么是DOI,文献DOI怎么找? 2321600
邀请新用户注册赠送积分活动 1319718
关于科研通互助平台的介绍 1270166