Development of an early detection and automatic targeting system for cotton weeds using an improved lightweight YOLOv8 architecture on an edge device

建筑 GSM演进的增强数据速率 计算机科学 嵌入式系统 工程类 人工智能 地理 考古
作者
Md. Jawadul Karim,Md. Nahiduzzaman,Mominul Ahsan,Julfikar Haider
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:300: 112204-112204 被引量:2
标识
DOI:10.1016/j.knosys.2024.112204
摘要

Traditional means of weed removal, such as human work or the use of pesticides, frequently require significant amounts of effort, incur high expenses, and can negatively impact the environment. This study introduces a modified version of the YOLOv8 nano architecture that is suitable for running on edge devices for real-time applications. The proposed model uses an augmented version of the well-known CottonWeedDet12 dataset consisting of a total of 16,944 images with characteristic annotations to develop a model capable of correctly distinguishing 12 different cotton weed classes with an increased mean average precision of 97.6 % that is about 1.2 % more than the model trained using original, unaugmented dataset. The final selected model uses a convolutional block attention module (CBAM) and a unique C3Ghost block within the YOLOv8 backbone, which together increase the model's reliability for more accurate predictions with reduced computational complexity. Upon training with the augmented dataset, the proposed model with only 3.6 million parameters was able to achieve an mAP@50 score of 97.6 %, which surpasses all previous studies conducted using this dataset. Additionally, a high F1 score of 94.4 % proves that the model has a good balance between recall and precision. Class Activation Map (CAM) approaches such as EigenCAM, Grad-CAM++, and LayerCAM explainable AI (XAI) showed promising results for each of the customized models upon testing their interpretability for cotton weed detection. Furthermore, based on this model, a fast and cost-efficient targeting system was developed using a yaw-pitch mechanism for automatic weed tracking and herbicide spraying.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Glufo完成签到,获得积分10
刚刚
1秒前
qqqqqq发布了新的文献求助10
2秒前
忘羡222发布了新的文献求助30
2秒前
紫菜发布了新的文献求助10
4秒前
8秒前
8秒前
独特亦旋完成签到,获得积分20
9秒前
今后应助qqqqqq采纳,获得10
10秒前
小马甲应助飞羽采纳,获得10
10秒前
星辰大海应助西内!卡Q因采纳,获得10
11秒前
11秒前
彬彬发布了新的文献求助10
12秒前
太叔捕完成签到,获得积分10
12秒前
高磊发布了新的文献求助10
13秒前
RH完成签到,获得积分10
13秒前
zhangzhen完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助zfzf0422采纳,获得10
16秒前
Wendy1204发布了新的文献求助10
17秒前
17秒前
lydy1993完成签到,获得积分10
18秒前
19秒前
滴滴哒哒完成签到 ,获得积分10
19秒前
SciGPT应助波波玛奇朵采纳,获得10
21秒前
戏言121完成签到,获得积分10
21秒前
迷人的映雁完成签到,获得积分10
22秒前
22秒前
美丽的之双完成签到,获得积分10
23秒前
阿会完成签到,获得积分10
23秒前
wqm完成签到,获得积分10
24秒前
戏言121发布了新的文献求助10
25秒前
25秒前
26秒前
优雅的流沙完成签到 ,获得积分10
27秒前
猫的海完成签到,获得积分10
27秒前
27秒前
Eason Liu完成签到,获得积分0
28秒前
Wendy1204完成签到,获得积分20
28秒前
Hello应助654采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824