Genome-Wide Mendelian Randomization Identifies Ferroptosis-Related Drug Targets for Alzheimer’s Disease

孟德尔随机化 疾病 基因组 药品 计算生物学 遗传学 生物 孟德尔遗传 药物试验 基因 医学 生物信息学 临床试验 遗传变异 药理学 内科学 基因型
作者
Ying Wang,Xinhua Song,Rui Wang,Xinzi Xu,Yaming Du,Guohua Chen,Junhua Mei
出处
期刊:Journal of Alzheimer's disease reports [IOS Press]
卷期号:8 (1): 1185-1197
标识
DOI:10.3233/adr-240062
摘要

Background: Alzheimer’s disease (AD) currently lacks effective disease-modifying treatments. Recent research suggests that ferroptosis could be a potential therapeutic target. Mendelian randomization (MR) is a widely used method for identifying novel therapeutic targets. Objective: Employ genetic information to evaluate the causal impact of ferroptosis-related genes on the risk of AD. Methods: 564 ferroptosis-related genes were obtained from FerrDb. We derived genetic instrumental variables for these genes using four brain quantitative trait loci (QTL) and two blood QTL datasets. Summary-data-based Mendelian randomization (SMR) and two-sample MR methods were applied to estimate the causal effects of ferroptosis-related genes on AD. Using extern transcriptomic datasets and triple-transgenic mouse model of AD (3xTg-AD) to further validate the gene targets identified by the MR analysis. Results: We identified 17 potential AD risk gene targets from GTEx, 13 from PsychENCODE, and 22 from BrainMeta (SMR p < 0.05 and HEIDI test p > 0.05). Six overlapping ferroptosis-related genes associated with AD were identified, which could serve as potential therapeutic targets (PEX10, CDC25A, EGFR, DLD, LIG3, and TRIB3). Additionally, we further pinpointed risk genes or proteins at the blood tissue and pQTL levels. Notably, EGFR demonstrated significant dysregulation in the extern transcriptomic datasets and 3xTg-AD models. Conclusions: This study provides genetic evidence supporting the potential therapeutic benefits of targeting the six druggable genes for AD treatment, especially for EGFR (validated by transcriptome and 3xTg-AD), which could be useful for prioritizing AD drug development in the field of ferroptosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
实验室应助IVENG采纳,获得30
1秒前
bayes111完成签到,获得积分20
1秒前
桐桐应助qin123采纳,获得10
1秒前
2秒前
彪壮的绿蕊应助neversay4ever采纳,获得10
3秒前
小明发布了新的文献求助10
3秒前
mulidexin2021完成签到,获得积分0
3秒前
4秒前
白白SAMA123发布了新的文献求助10
4秒前
1111完成签到,获得积分10
4秒前
隐形曼青应助cathylll采纳,获得10
4秒前
刚刚好发布了新的文献求助10
4秒前
summer完成签到,获得积分20
5秒前
bayes111发布了新的文献求助30
5秒前
梦曦完成签到,获得积分10
6秒前
自然沁完成签到,获得积分10
6秒前
慕青应助whuyyz采纳,获得10
7秒前
penghuiye完成签到,获得积分10
7秒前
spc68应助XLin采纳,获得10
8秒前
完美世界应助科研不通畅采纳,获得10
8秒前
粗心的小刺猬完成签到,获得积分10
8秒前
深情安青应助大力水手采纳,获得10
9秒前
路戳戳应助等待的乐儿采纳,获得10
9秒前
10秒前
11秒前
yu完成签到,获得积分10
11秒前
丘比特应助CXX采纳,获得10
11秒前
舒心雅山完成签到,获得积分20
12秒前
天天快乐应助谨慎的静竹采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
等待的乐儿完成签到,获得积分20
14秒前
zgy1106完成签到,获得积分10
15秒前
www完成签到,获得积分10
15秒前
势不可挡完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709417
求助须知:如何正确求助?哪些是违规求助? 5194819
关于积分的说明 15256984
捐赠科研通 4862196
什么是DOI,文献DOI怎么找? 2609928
邀请新用户注册赠送积分活动 1560336
关于科研通互助平台的介绍 1518058