LES-YOLO: efficient object detection algorithm used on UAV for traffic monitoring

失败 计算机科学 骨干网 冗余(工程) 架空(工程) 目标检测 算法 特征(语言学) 光学(聚焦) 实时计算 人工智能 并行计算 模式识别(心理学) 计算机网络 操作系统 光学 物理 哲学 语言学
作者
Hongyu Zhang,Lixia Deng,Shoujun Lin,Honglu Zhang,Jinshun Dong,Dapeng Wan,Lingyun Bi,Haiying Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016008-016008 被引量:10
标识
DOI:10.1088/1361-6501/ad86e2
摘要

Abstract The use of UAVs for traffic monitoring greatly facilitates people’s lives. Classical object detection algorithms struggle to balance high speed and accuracy when processing UAV images on edge devices. To solve the problem, the paper introduces an efficient and slim YOLO with low computational overhead, named LES-YOLO. In order to enrich the feature representation of small and medium objects in UAV images, a redesigned backbone is introduced. And C2f combined with Coordinate Attention is used to focus on key features. In order to enrich cross-scale information and reduce feature loss during network transmission, a novel structure called EMS-PAN (Enhanced Multi-Scale PAN) is designed. At the same time, to alleviate the problem of class imbalance, Focal EIoU is used to optimize network loss calculation instead of CIoU. To minimize redundancy and ensure a slim architecture, the P5 layer has been eliminated from the model. And verification experiments show that LES-YOLO without P5 is more efficient and slimmer. LES-YOLO is trained and tested on the VisDrone2019 dataset. Compared with YOLOv8n-p2, mAP@0.5 and Recall has increased by 7.4% and 7%. The number of parameters is reduced by over 50%, from 2.9 M to 1.4 M, but there is a certain degree of increase in FLOPS, reaching 18.8 GFLOPS. However, the overall computational overhead is still small enough. Moreover, compared with YOLOv8s-p2, both the number of parameters and FLOPS are significantly reduced , while the performance is similar . As for real-time, LES-YOLO reaches 138 fps on GPU and a maximum of 78 fps on edge devices of UAV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CT发布了新的文献求助10
5秒前
蛋黄啵啵发布了新的文献求助10
9秒前
10秒前
zqh完成签到,获得积分20
10秒前
10秒前
13秒前
13秒前
Liu发布了新的文献求助10
15秒前
CT完成签到,获得积分10
15秒前
xiaosu发布了新的文献求助10
16秒前
YY发布了新的文献求助30
17秒前
昏睡的人完成签到 ,获得积分10
18秒前
Komorebi完成签到 ,获得积分10
20秒前
zhaozhao发布了新的文献求助20
22秒前
71完成签到,获得积分10
22秒前
小白完成签到 ,获得积分10
23秒前
24秒前
快乐芷荷完成签到 ,获得积分10
24秒前
chj完成签到,获得积分10
24秒前
qiqiqiqiqi完成签到 ,获得积分10
24秒前
hope完成签到,获得积分10
25秒前
30秒前
saberLee发布了新的文献求助10
30秒前
赵宇鹏完成签到,获得积分10
30秒前
31秒前
爱笑的蛟凤完成签到,获得积分10
33秒前
笨笨千亦完成签到 ,获得积分10
35秒前
左欣岳完成签到 ,获得积分10
36秒前
37秒前
saberLee完成签到,获得积分10
37秒前
38秒前
斯文败类应助樱花打落雨采纳,获得10
39秒前
无私航空发布了新的文献求助10
39秒前
40秒前
Lucas应助gaijiaofanv采纳,获得10
42秒前
开心幻巧完成签到,获得积分10
42秒前
43秒前
汉堡包应助四维穿梭采纳,获得10
43秒前
闲人颦儿完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675671
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460963