LES-YOLO: Efficient Object Detection Algorithm Used on UAV for Traffic Monitoring

失败 计算机科学 骨干网 冗余(工程) 架空(工程) 目标检测 算法 特征(语言学) 光学(聚焦) 实时计算 人工智能 并行计算 模式识别(心理学) 计算机网络 操作系统 光学 物理 哲学 语言学
作者
Hongyu Zhang,Lixia Deng,Shoujun Lin,Honglu Zhang,Jinshun Dong,Dapeng Wan,Lingyun Bi,Haiying Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016008-016008 被引量:1
标识
DOI:10.1088/1361-6501/ad86e2
摘要

Abstract The use of UAVs for traffic monitoring greatly facilitates people’s lives. Classical object detection algorithms struggle to balance high speed and accuracy when processing UAV images on edge devices. To solve the problem, the paper introduces an efficient and slim YOLO with low computational overhead, named LES-YOLO. In order to enrich the feature representation of small and medium objects in UAV images, a redesigned backbone is introduced. And C2f combined with Coordinate Attention is used to focus on key features. In order to enrich cross-scale information and reduce feature loss during network transmission, a novel structure called EMS-PAN (Enhanced Multi-Scale PAN) is designed. At the same time, to alleviate the problem of class imbalance, Focal EIoU is used to optimize network loss calculation instead of CIoU. To minimize redundancy and ensure a slim architecture, the P5 layer has been eliminated from the model. And verification experiments show that LES-YOLO without P5 is more efficient and slimmer. LES-YOLO is trained and tested on the VisDrone2019 dataset. Compared with YOLOv8n-p2, mAP@0.5 and Recall has increased by 7.4% and 7%. The number of parameters is reduced by over 50%, from 2.9 M to 1.4 M, but there is a certain degree of increase in FLOPS, reaching 18.8 GFLOPS. However, the overall computational overhead is still small enough. Moreover, compared with YOLOv8s-p2, both the number of parameters and FLOPS are significantly reduced , while the performance is similar . As for real-time, LES-YOLO reaches 138 fps on GPU and a maximum of 78 fps on edge devices of UAV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定的平松完成签到,获得积分10
刚刚
识途完成签到,获得积分10
刚刚
Ehgnix完成签到,获得积分10
1秒前
传奇3应助郭志倩采纳,获得10
1秒前
Onni完成签到 ,获得积分10
1秒前
Geodada完成签到,获得积分10
1秒前
Sunrise应助文件撤销了驳回
2秒前
2秒前
残酷的风完成签到,获得积分10
2秒前
刘雯完成签到,获得积分10
3秒前
3秒前
缥缈的绮南完成签到,获得积分10
3秒前
4秒前
Orange应助斯文远望采纳,获得10
4秒前
Lucas应助行走的车采纳,获得10
4秒前
aqqqwee完成签到,获得积分20
4秒前
5秒前
喻开山完成签到,获得积分10
5秒前
杰尼龟006发布了新的文献求助10
6秒前
6秒前
姜水完成签到,获得积分10
6秒前
个性惜蕊完成签到,获得积分10
6秒前
遐蝶完成签到,获得积分10
6秒前
嘻嘻叮完成签到,获得积分10
6秒前
6秒前
wangs完成签到,获得积分20
7秒前
曹静怡发布了新的文献求助30
7秒前
pillow完成签到,获得积分10
7秒前
lignin完成签到,获得积分10
7秒前
时光完成签到 ,获得积分10
8秒前
刘艺娜完成签到,获得积分10
8秒前
Zirong发布了新的文献求助10
8秒前
迷途的羔羊完成签到 ,获得积分10
8秒前
hino完成签到,获得积分10
9秒前
Ericliu完成签到,获得积分10
9秒前
10秒前
dididi完成签到,获得积分10
10秒前
Mrchen发布了新的文献求助10
10秒前
11秒前
依依完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904