LES-YOLO: Efficient Object Detection Algorithm Used on UAV for Traffic Monitoring

失败 计算机科学 骨干网 冗余(工程) 架空(工程) 目标检测 算法 特征(语言学) 光学(聚焦) 实时计算 人工智能 并行计算 模式识别(心理学) 计算机网络 语言学 哲学 物理 光学 操作系统
作者
Hongyu Zhang,Lixia Deng,Shoujun Lin,Honglu Zhang,Jinshun Dong,Dapeng Wan,Lingyun Bi,Haiying Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad86e2
摘要

Abstract The use of UAVs for traffic monitoring greatly facilitates people's lives. Classical object detection algorithms struggle to balance high speed and accuracy when processing UAV images on edge devices. To solve the problem, the paper introduces an efficient and slim YOLO with low computational overhead, named LES-YOLO. In order to enrich the feature representation of small and medium objects in UAV images, a redesigned backbone is introduced. And C2f combined with Coord Attention (CA) is used to focus on key features. In order to enrich cross-scale information and reduce feature loss during network transmission, a novel structure called EMS-PAN (Enhanced Multi-Scale PAN) is designed. At the same time, to alleviate the problem of class imbalance, Focal EIoU is used to optimize network loss calculation instead of CIoU. To minimize redundancy and ensure a slim architecture, the P5 layer has been eliminated from the model. And verification experiments show that LES-YOLO without P5 is more efficient and slimmer. LES-YOLO is trained and tested on the VisDrone2019 dataset. Compared with YOLOv8n-p2, mAP@0.5 and Recall has increased by 7.4% and 7%. The number of parameters is reduced by over 50%, from 2.9 M to 1.4 M, but there is a certain degree of increase in FLOPS, reaching 18.8 GFLOPS. However, the overall computational overhead is still small enough. Moreover, compared with YOLOv8s-p2, both the number of parameters and FLOPS are significantly reduced, while the performance is similar. As for real-time, LES-YOLO reaches 138 fps on GPU and a maximum of 78 fps on edge devices of UAV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sam发布了新的文献求助10
2秒前
zyt应助meimei采纳,获得10
4秒前
4秒前
巴基斯坦农民完成签到,获得积分20
6秒前
6秒前
完美世界应助夏天采纳,获得10
6秒前
bonnie完成签到,获得积分10
6秒前
CCC完成签到,获得积分10
6秒前
7秒前
TranYan完成签到,获得积分10
7秒前
儒雅一凤完成签到 ,获得积分10
7秒前
在路上完成签到 ,获得积分0
7秒前
酷炫迎波完成签到,获得积分10
9秒前
无足鸟应助复杂的雪巧采纳,获得10
11秒前
万能图书馆应助ccccccc采纳,获得10
11秒前
hhl发布了新的文献求助10
11秒前
西瓜汁完成签到,获得积分10
13秒前
nowfitness完成签到,获得积分10
14秒前
15秒前
zzr完成签到,获得积分10
16秒前
17秒前
顾矜应助1781266采纳,获得10
18秒前
19秒前
hhl完成签到,获得积分10
19秒前
19秒前
岁月如歌完成签到,获得积分10
21秒前
ljs发布了新的文献求助10
21秒前
超超爱吃瓜完成签到,获得积分10
21秒前
十八发布了新的文献求助10
22秒前
22秒前
22秒前
kf033完成签到,获得积分10
24秒前
26秒前
宓不评完成签到 ,获得积分20
27秒前
wanci应助巴基斯坦农民采纳,获得10
29秒前
29秒前
陈秋发布了新的文献求助10
31秒前
乐在奇中完成签到,获得积分10
32秒前
34秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082501
求助须知:如何正确求助?哪些是违规求助? 2735655
关于积分的说明 7538441
捐赠科研通 2385263
什么是DOI,文献DOI怎么找? 1264761
科研通“疑难数据库(出版商)”最低求助积分说明 612786
版权声明 597665