控制理论(社会学)
控制器(灌溉)
电压调节器
调节器
分数阶微积分
自适应神经模糊推理系统
衍生工具(金融)
电压
订单(交换)
数学
控制工程
计算机科学
工程类
应用数学
控制(管理)
人工智能
电气工程
经济
化学
模糊控制系统
财务
模糊逻辑
基因
生物
生物化学
农学
作者
Abdullah Fadhil Mohammed,Hamzah M. Marhoon,Noorulden Basil,Alfian Ma’arif
出处
期刊:International Journal of Robotics and Control Systems
[ASCEE Publications]
日期:2024-04-23
卷期号:4 (2): 463-479
被引量:3
标识
DOI:10.31763/ijrcs.v4i2.1336
摘要
In the dynamic realm of Automatic Voltage Regulation (AVR), the pursuit of robust transient response, adaptability, and stability drives researchers to explore novel avenues. This study introduces a groundbreaking approach—the Hybrid Intelligent Fractional Order Proportional Derivative2+Integral (FOPDD+I) controller—leveraging the power of the Adaptive Neuro-Fuzzy Inference System (ANFIS). The novelty lies in the comparative analysis of three scenarios: the AVR system without a controller, with a traditional PID controller, and with the proposed FOPDD+I-based ANFIS. By fusing ANFIS with a hybrid controller, we forge a unique path toward optimized AVR performance. The hybrid controller, based on FOPID (Fractional Order Proportional Integral Derivative) principles, synergizes individual integral factors with ANFIS, augmenting them with a doubled derivative factor. The ANFIS design employs a hybrid optimization learning scheme to fine-tune the Fuzzy Inference System (FIS) parameters governing the AVR system. To train the fuzzy inference system, we utilize a Proportional-Integral-Derivative (PID) simulation of the entire AVR system, capturing essential data over approximately seven seconds. Our simulations, conducted in MATLAB/Simulink, reveal impressive performance metrics for the FOPDD+I-ANFIS approach: Rise time: 1.1162 seconds, settling time: 0.5531 seconds, Overshoot: 0%, Steady-state error: 0.00272, These results position our novel approach favorably against existing works, underscoring the transformative potential of intelligent creation in AVR control.
科研通智能强力驱动
Strongly Powered by AbleSci AI