生物转化
磷
污水处理
硫黄
废水
氮气
生态系统
环境化学
环境科学
碳纤维
化学
废物管理
生化工程
环境工程
计算机科学
生态学
工程类
生物
有机化学
算法
复合数
酶
作者
Jinqi Jiang,Xiang Xiang,Qinhao Zhou,Lichang Zhou,Xinqi Bi,Samir Kumar Khanal,Zongping Wang,Guanghao Chen,Gang Guo
标识
DOI:10.1021/acs.est.4c03160
摘要
The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), phosphorus (P), and S biotransformation. However, operational instability arises due to the numerous parameters and intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach to predict S conversion-driven P removal efficiency and optimize DS-EBPR process. Stage one utilized the XGBoost regression model, achieving an
科研通智能强力驱动
Strongly Powered by AbleSci AI