A New Framework for Nonlinear Kalman Filters

卡尔曼滤波器 移动视界估计 非线性系统 扩展卡尔曼滤波器 计算机科学 控制理论(社会学) 人工智能 物理 控制(管理) 量子力学
作者
Shida Jiang,Junzhe Shi,Scott Moura
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2407.05717
摘要

The Kalman filter (KF) is a state estimation algorithm that optimally combines system knowledge and measurements to minimize the mean squared error of the estimated states. While KF was initially designed for linear systems, numerous extensions of it, such as extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc., have been proposed for nonlinear systems. Although different types of nonlinear KFs have different pros and cons, they all use the same framework of linear KF, which, according to what we found in this paper, tends to give overconfident and less accurate state estimations when the measurement functions are nonlinear. Therefore, in this study, we designed a new framework for nonlinear KFs and showed theoretically and empirically that the new framework estimates the states and covariance matrix more accurately than the old one. The new framework was tested on four different nonlinear KFs and five different tasks, showcasing its ability to reduce the estimation errors by several orders of magnitude in low-measurement-noise conditions, with only about a 10 to 90% increase in computational time. All types of nonlinear KFs can benefit from the new framework, and the benefit will increase as the sensors become more and more accurate in the future. As an example, EKF, the simplest nonlinear KF that was previously believed to work poorly for strongly nonlinear systems, can now provide fast and fairly accurate state estimations with the help of the new framework. The codes are available at https://github.com/Shida-Jiang/A-new-framework-for-nonlinear-Kalman-filters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溯溯完成签到 ,获得积分10
2秒前
sam发布了新的文献求助10
3秒前
笑点低靖雁完成签到,获得积分10
4秒前
科研通AI5应助龙弟弟采纳,获得10
5秒前
Mingjun完成签到 ,获得积分10
8秒前
搜集达人应助Nicetomeet球采纳,获得30
9秒前
lingVing瑜完成签到,获得积分10
10秒前
12秒前
12秒前
狐狸狗狗发布了新的文献求助30
15秒前
lsy完成签到,获得积分10
15秒前
火辣蛤蟆发布了新的文献求助30
16秒前
奇异物质发布了新的文献求助10
17秒前
17秒前
贾舒涵发布了新的文献求助30
20秒前
20秒前
快乐小狗应助瘦瘦妖妖采纳,获得10
20秒前
23秒前
李爱国应助要减肥晓蓝采纳,获得10
25秒前
26秒前
llxgjx完成签到,获得积分10
26秒前
zym发布了新的文献求助10
27秒前
29秒前
gu发布了新的文献求助10
29秒前
星辰大海应助skier采纳,获得10
30秒前
知来者完成签到,获得积分10
32秒前
科研通AI5应助贾舒涵采纳,获得10
33秒前
34秒前
34秒前
唐诗阅完成签到,获得积分10
34秒前
李成哲完成签到,获得积分10
36秒前
37秒前
宇宇完成签到,获得积分20
38秒前
STT发布了新的文献求助10
39秒前
40秒前
帅气的寻琴完成签到,获得积分10
41秒前
科研通AI5应助zym采纳,获得10
41秒前
Magic发布了新的文献求助10
43秒前
爆米花应助nini采纳,获得10
45秒前
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673700
求助须知:如何正确求助?哪些是违规求助? 3229193
关于积分的说明 9784567
捐赠科研通 2939761
什么是DOI,文献DOI怎么找? 1611313
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326