A Novel Clinching Auction Mechanism for Edge Computing Resource Allocation With Budget Limits

机制(生物学) 资源配置 计算机科学 GSM演进的增强数据速率 拍卖算法 共同价值拍卖 经济 拍卖理论 计算机网络 微观经济学 收入等值 电信 物理 量子力学
作者
Jixian Zhang,Hao Sun,Zhemin Wang,Qian Su,Weidong Li
出处
期刊:Transactions on Emerging Telecommunications Technologies 卷期号:35 (11)
标识
DOI:10.1002/ett.70005
摘要

ABSTRACT An auction mechanism is an effective resource allocation method that can increase the revenue of resource providers in the field of edge computing. Existing auction mechanism designs mostly aim to maximize social welfare when allocating resources, but these schemes lead to low revenue. In contrast, clinching auctions have achieved good results in spectrum allocation and advertising due to their high revenue. Therefore, a clinching auction mechanism is a promising tool for allocating edge computing resources. However, clinching auctions have the drawback that they can only allocate homogeneous finitely divisible goods, meaning that they cannot be directly applied for resource allocation in edge computing. This article presents two new auction mechanisms that improve on the clinching auction. Specifically, based on the principle of increasing global prices and local competition, two mechanisms are designed, one from the perspective of resource providers (MDCAM‐ECS) and the other from the perspective of users (MDCAM‐User), to solve the problem of edge computing resource allocation and pricing with deployment constraints and user budget constraints. The mechanisms proposed in this article have the properties of individual rationality, truthfulness, and computational efficiency. In the experiments, in terms of social welfare and revenue, our algorithms can achieve a 20% improvement over existing algorithms, such as fixed‐price, Vickery–Clarke–Groves (VCG), and monotonic critical‐price mechanisms. Additionally, in most experiments, our algorithm can ensure resource utilization greater than 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彼岸@发布了新的文献求助10
刚刚
hino完成签到 ,获得积分10
1秒前
lanran214发布了新的文献求助10
1秒前
夙夙发布了新的文献求助10
1秒前
2秒前
zhuyt完成签到,获得积分10
4秒前
旭日发布了新的文献求助10
4秒前
eyu完成签到,获得积分10
4秒前
JamesPei应助陈什么烨采纳,获得10
5秒前
weilu关注了科研通微信公众号
6秒前
吴旭东发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
Krystal完成签到,获得积分10
7秒前
8秒前
10秒前
feizhuliu完成签到,获得积分20
10秒前
Akim应助喻紫寒采纳,获得10
10秒前
高挑的觅山完成签到,获得积分10
10秒前
彼岸@完成签到,获得积分10
12秒前
灵巧冰绿发布了新的文献求助20
13秒前
刻苦冷菱发布了新的文献求助10
13秒前
妩媚的强炫完成签到,获得积分10
13秒前
田様应助alex采纳,获得10
13秒前
13秒前
13秒前
14秒前
SciGPT应助买米当卡消失术采纳,获得10
14秒前
狂野语山完成签到 ,获得积分10
14秒前
CodeCraft应助夙夙采纳,获得10
15秒前
15秒前
16秒前
17秒前
搞学术的完成签到,获得积分10
18秒前
笑哈哈发布了新的文献求助10
18秒前
mklwxhlsd发布了新的文献求助10
18秒前
从容宛筠完成签到,获得积分10
19秒前
不配.发布了新的文献求助150
19秒前
方方方完成签到,获得积分10
19秒前
StuXuhao发布了新的文献求助300
20秒前
纸莺发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021