Red cell distribution width/albumin ratio as a marker for metabolic syndrome: findings from a cross-sectional study

医学 横断面研究 白蛋白 红细胞分布宽度 糖尿病 代谢综合征 内科学 分布(数学) 内分泌学 病理 数学分析 数学
作者
Hao Guo,Li Wang,Ying Miao,Qiang Lin
出处
期刊:BMC Endocrine Disorders [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12902-024-01762-7
摘要

Metabolic syndrome (MetS) imposes a significant health burden on patients globally. Chronic low-grade inflammation is pivotal in the onset and progression of this condition. However, the role of the novel inflammatory marker, red cell distribution width to albumin ratio (RAR), in the development of MetS remains unclear. This population-based cross-sectional study utilized data from the 2011–2020 National Health and Nutrition Examination Survey (NHANES). Participants included individuals over 18 years old with complete data on serum albumin concentration, red cell distribution, and MetS and its components. MetS was defined using the criteria established by the National Cholesterol Education Program Adult Treatment Panel III. The calculation formula for RAR is: RAR = Red cell distribution width (%)/serum albumin (g/dL). Study participants were stratified into four quartiles based on RAR levels. Logistic regression analysis and subgroup analysis were employed to explore the independent interaction between RAR and MetS, as well as investigate the relationship between RAR levels and the specific components of MetS. Finally, the receiver operating characteristic (ROC) curve was used to assess the predictive efficacy of RAR for MetS. A total of 4899 participants were included in this study, comprising 2450 males and 2449 females; 1715 individuals (35.01%) were diagnosed with MetS. As the quartile of RAR increased, the proportion of individuals with MetS also increased. Spearman correlation analysis indicated a positive correlation between RAR and the insulin resistance index HOMA-IR. Logistic regression analysis, adjusting for multiple confounding factors, showed that each standard deviation increase in RAR was associated with a significant 1.665-fold increase (95% CI, 1.404–1.975; P < 0.001) in the odds of MetS prevalence. In logistic regression analysis stratified by quartiles of RAR, the risks of MetS in Q1-Q4 were 1.372 (95% CI, 1.105–1.704; P = 0.004), 1.783 (95% CI, 1.434–2.216; P < 0.001), and 2.173 (95% CI, 1.729–2.732; P < 0.001), respectively. Subgroup analyses and interaction tests demonstrated that gender, age, race, education, smoking status, and physical activity modified the positive association between RAR and MetS (p for interaction < 0.05). Additionally, analysis of the area under the receiver operating characteristic (ROC) curve showed that the optimal cutoff value for predicting MetS using RAR was 3.1348 (sensitivity: 59.9%; specificity: 60.6%; and AUC: 0.628). Increasing RAR levels are associated with a higher risk of MetS. Therefore, greater attention should be given to patients with high RAR levels for improved prevention and treatment of MetS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助小宋采纳,获得10
2秒前
姜WIFI完成签到,获得积分10
2秒前
3秒前
3秒前
木木完成签到,获得积分10
6秒前
多情易蓉完成签到,获得积分10
6秒前
zhixiang完成签到,获得积分10
7秒前
11秒前
科研通AI2S应助Repher采纳,获得10
11秒前
叶笑笑完成签到,获得积分10
12秒前
12秒前
13秒前
钰宁完成签到,获得积分10
13秒前
13秒前
14秒前
站住辣条发布了新的文献求助10
15秒前
15秒前
lemon完成签到 ,获得积分10
16秒前
cp1690发布了新的文献求助10
18秒前
只与你发布了新的文献求助10
19秒前
晴芷完成签到,获得积分10
19秒前
22秒前
LewisAcid完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
研友_VZG7GZ应助糟糕的铁锤采纳,获得30
24秒前
25秒前
单色发布了新的文献求助10
26秒前
hannah发布了新的文献求助10
26秒前
linkin完成签到 ,获得积分10
26秒前
zyq发布了新的文献求助10
27秒前
28秒前
星河完成签到,获得积分10
31秒前
传奇3应助zjujirenjie采纳,获得10
32秒前
林ci发布了新的文献求助10
32秒前
33秒前
lqtnb完成签到,获得积分20
36秒前
量子星尘发布了新的文献求助10
37秒前
38秒前
单色完成签到,获得积分10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425466
求助须知:如何正确求助?哪些是违规求助? 4539502
关于积分的说明 14168309
捐赠科研通 4457101
什么是DOI,文献DOI怎么找? 2444422
邀请新用户注册赠送积分活动 1435337
关于科研通互助平台的介绍 1412740