Towards Graph Prompt Learning: A Survey and Beyond

图形 计算机科学 数据科学 心理学 理论计算机科学
作者
Qingqing Long,Yuchen Yan,Peiyan Zhang,Chen Fang,Wentao Cui,Zhiyuan Ning,Meng Xiao,Ning Cao,Xiao Luo,Lingjun Xu,S. S. Jiang,Zheng Fang,Chong Chen,Xian–Sheng Hua,Yuanchun Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.14520
摘要

Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability, enabling broad applications across diverse domains such as question answering, image recognition, and multimodal retrieval. This approach fully leverages the potential of large-scale pre-trained models, reducing downstream data requirements and computational costs while enhancing model applicability across various tasks. Graphs, as versatile data structures that capture relationships between entities, play pivotal roles in fields such as social network analysis, recommender systems, and biological graphs. Despite the success of pre-train and prompt learning paradigms in Natural Language Processing (NLP) and Computer Vision (CV), their application in graph domains remains nascent. In graph-structured data, not only do the node and edge features often have disparate distributions, but the topological structures also differ significantly. This diversity in graph data can lead to incompatible patterns or gaps between pre-training and fine-tuning on downstream graphs. We aim to bridge this gap by summarizing methods for alleviating these disparities. This includes exploring prompt design methodologies, comparing related techniques, assessing application scenarios and datasets, and identifying unresolved problems and challenges. This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications, including text-attributed graphs, molecules, proteins, and recommendation systems. Through this extensive review, we provide a foundational understanding of graph prompt learning, aiming to impact not only the graph mining community but also the broader Artificial General Intelligence (AGI) community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yomoo发布了新的文献求助10
1秒前
JMG完成签到,获得积分10
2秒前
jf发布了新的文献求助10
5秒前
6秒前
6秒前
吉祥财子完成签到,获得积分10
8秒前
含蓄的明雪完成签到,获得积分10
8秒前
WeiBao发布了新的文献求助10
8秒前
MM_123发布了新的文献求助10
10秒前
张柏深应助jf采纳,获得10
12秒前
ggjhgh发布了新的文献求助10
12秒前
科研通AI2S应助cloud采纳,获得30
13秒前
16秒前
19秒前
22秒前
ggjhgh完成签到,获得积分10
22秒前
18340312141完成签到,获得积分10
23秒前
23秒前
搞怪便当完成签到,获得积分10
24秒前
25秒前
26秒前
耿大海完成签到,获得积分10
30秒前
30秒前
gaga完成签到,获得积分10
31秒前
miki发布了新的文献求助10
31秒前
深情安青应助大力的无声采纳,获得10
32秒前
研友_VZG7GZ应助KitasanHN采纳,获得10
32秒前
夏天完成签到,获得积分10
33秒前
骰子完成签到 ,获得积分20
33秒前
Rachel发布了新的文献求助30
36秒前
夏天发布了新的文献求助10
39秒前
MM_123完成签到,获得积分10
42秒前
43秒前
小熊完成签到,获得积分10
44秒前
44秒前
46秒前
47秒前
Hello应助斑点采纳,获得10
49秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316201
求助须知:如何正确求助?哪些是违规求助? 2947786
关于积分的说明 8538590
捐赠科研通 2623888
什么是DOI,文献DOI怎么找? 1435612
科研通“疑难数据库(出版商)”最低求助积分说明 665632
邀请新用户注册赠送积分活动 651457