The condition of myocardium reserves score from a cloud-based analytics platform of Holter ECG data indicates better cardiometabolic function in heart failure

医学 心脏病学 内科学 心力衰竭 大数据 云计算 分析 数据科学 数据挖掘 计算机科学 操作系统
作者
Nicole Belanger,Silav Zeid,Alexander Gieswinkel,Daniel C. Carstens,Fawad Kazemi-Asrar,David Velmeden,Felix Mueller,M W Heidorn,Anna Starynska,Wilfried Dinh,Karl J. Lackner,Tommaso Gori,Philipp Lurz,Illya Chaikovsky,Philipp S. Wild
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2710
摘要

Abstract Introduction Cardiometabolic dysregulation, particularly type 2 diabetes mellitus (T2DM), is associated with subtle myocardial pathologies, even in individuals without known cardiovascular disease. These subclinical changes, often undetectable by standard electrocardiogram (ECG) analytics, can offer valuable insights into the relationship between metabolic health and cardiac function. Novel ECG markers, developed through machine learning and artificial intelligence (AI), may provide the sensitivity needed to detect such changes. Aim This study aims to evaluate novel composite cardiac parameters from an analytics platform in the context of heart failure (HF), seeking to understand their relationship to cardiometabolic dysregulation. Methods Data from the MyoVasc study, a prospective cohort on HF, were analysed. Participants underwent extensive clinical phenotyping, including a Holter ECG assessment. Holter ECG data was processed based on machine learning and AI models on a cloud-based analytics platform (Cardiolyse, Helsinki, Finland), generating both traditional and proprietary ECG, and heart rate variability cardiac health markers. LASSO-penalized logistic regression adjusted for sex and age was performed to select the marker most strongly associated with T2DM. The identified marker was then evaluated in relation to cardiac function and structure as well as HF-related outcome. Results A total of 953 subjects (mean±SD age 64.6±10.5 years; 35.7% women) were included in the analyses. Symptomatic HF stage C/D was present in 54.8% (n=522) of subjects and diabetes mellitus in 22.4% (n=213). The Condition of Myocardium Reserves Score (CMRS) was the novel composite cardiac parameter selected based on its relationship with T2DM. In a Poisson regression model with robust variance adjusted for sex and age, a lower score was associated with T2DM (Prevalence ratio per SD 1.24, 95% confidence interval [1.14;1.36], P=0.0002). In multivariable linear regressions adjusted for traditional cardiovascular risk factors, comorbidities, and medication, a higher CMRS was associated with better global longitudinal strain (β per SD –0.82 [–1.11;–0.53], P<0.0001), diastolic function (left ventricular E/e’; β per SD –0.04 [–0.06;–0.01], P=0.0059) and systolic function (LV ejection fraction; β per SD 2.06 [1.46;2.67], P<0.0001). A lower CMRS independently predicted all-cause death (Hazard ratio per SD 1.25 [1.09;1.45], P=0.0020) and worsening of HF (HR per SD 1.44 [1.21;1.72], P<0.0001) in Cox regression analysis adjusted for the same confounders. Conclusion The Condition of Myocardium Reserves Score exhibited a strong association with cardiometabolic dysregulation. A higher CMRS indicated preserved cardiac function, while a lower score independently predicted increased risk of all-cause death and worsening HF. This novel score offers potential as a non-invasive tool for assessing cardiometabolic health and stratifying risk in patients with HF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助科研通管家采纳,获得10
刚刚
鸣笛应助科研通管家采纳,获得30
1秒前
打打应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Virtual应助科研通管家采纳,获得20
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
梨花诗发布了新的文献求助10
1秒前
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
华仔应助大马猴采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
酷波er应助Irene采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
幸福大白发布了新的文献求助30
2秒前
斯文书翠发布了新的文献求助10
3秒前
核桃发布了新的文献求助10
3秒前
贾昌波完成签到,获得积分10
4秒前
卿卿发布了新的文献求助10
4秒前
酷波er应助微笑的鱼采纳,获得10
5秒前
小马甲应助呆呆要努力采纳,获得10
5秒前
Shinkai39完成签到,获得积分10
6秒前
修炼成绝发布了新的文献求助10
6秒前
嘻嘻嘻完成签到 ,获得积分10
8秒前
浮游应助guiyi666采纳,获得10
9秒前
专注的墨完成签到,获得积分10
9秒前
Yiy完成签到 ,获得积分0
10秒前
量子星尘发布了新的文献求助10
10秒前
苹果熊猫完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608373
求助须知:如何正确求助?哪些是违规求助? 4014956
关于积分的说明 12431782
捐赠科研通 3696131
什么是DOI,文献DOI怎么找? 2037842
邀请新用户注册赠送积分活动 1070949
科研通“疑难数据库(出版商)”最低求助积分说明 954875