Research on Transformer Condition Prediction Based on Gas Prediction and Fault Diagnosis

变压器 可靠性工程 断层(地质) 计算机科学 工程类 电气工程 地质学 电压 地震学
作者
Can Ding,Wenhui Chen,Donghai Yu,Yongcan Yan
出处
期刊:Energies [MDPI AG]
卷期号:17 (16): 4082-4082 被引量:2
标识
DOI:10.3390/en17164082
摘要

As an indispensable part of the power system, transformers need to be continuously monitored to detect anomalies or faults in a timely manner to avoid serious damage to the power grid and society. This article proposes a combined model for transformer state prediction, which integrates gas concentration prediction and fault diagnosis models. First, based on the historical monitoring data, each characteristic gas sequence is subjected to one optimal variational mode decomposition (OVMD) and one complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The decomposed sub-sequences are input into a bi-directional long short-term memory network (Bi-LSTM) optimized by the sparrow search algorithm (SSA) for prediction, and the predicted value of each sub-sequence was then superimposed to be the predicted value of the characteristic gas. We input the predicted values of each gas into the improved sparrow search algorithm-optimized support vector machine (ISSA-SVM) model, which can output the final fault type. After the construction of the combined model of state prediction is completed, this paper uses three actual cases to test the model, and at the same time, it uses the traditional fault diagnosis methods to judge the cases and compare these methods with the model in this paper. The results show that the combined model of transformer state prediction constructed in this paper is able to predict the type of transformer faults in the future effectively, and it is of great significance for the practical application of transformer fault type diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunbrust发布了新的文献求助30
1秒前
张大星完成签到 ,获得积分10
2秒前
4秒前
4秒前
SHF完成签到 ,获得积分10
5秒前
6秒前
liamddd完成签到 ,获得积分10
7秒前
小何发布了新的文献求助10
11秒前
西瓜二郎发布了新的文献求助10
11秒前
哈哈哈66发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
22秒前
淡然葶完成签到 ,获得积分10
24秒前
27秒前
Singhi完成签到 ,获得积分10
27秒前
葛优发布了新的文献求助10
29秒前
30秒前
归尘发布了新的文献求助10
30秒前
31秒前
深情安青应助阔达苡采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
斯文败类应助科研通管家采纳,获得10
35秒前
大模型应助科研通管家采纳,获得10
35秒前
传奇3应助科研通管家采纳,获得10
35秒前
个性的荆应助科研通管家采纳,获得10
35秒前
wy.he应助科研通管家采纳,获得10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
tuanheqi应助科研通管家采纳,获得150
36秒前
个性的荆应助科研通管家采纳,获得10
36秒前
iNk应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
natmed应助科研通管家采纳,获得10
36秒前
个性的荆应助科研通管家采纳,获得10
36秒前
彭于晏应助科研通管家采纳,获得10
36秒前
星辰大海应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
个性的荆应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652866
求助须知:如何正确求助?哪些是违规求助? 4788617
关于积分的说明 15061919
捐赠科研通 4811370
什么是DOI,文献DOI怎么找? 2573877
邀请新用户注册赠送积分活动 1529653
关于科研通互助平台的介绍 1488381