Research on Transformer Condition Prediction Based on Gas Prediction and Fault Diagnosis

变压器 可靠性工程 断层(地质) 计算机科学 工程类 电气工程 地质学 电压 地震学
作者
Can Ding,Wenhui Chen,Donghai Yu,Yongcan Yan
出处
期刊:Energies [MDPI AG]
卷期号:17 (16): 4082-4082 被引量:2
标识
DOI:10.3390/en17164082
摘要

As an indispensable part of the power system, transformers need to be continuously monitored to detect anomalies or faults in a timely manner to avoid serious damage to the power grid and society. This article proposes a combined model for transformer state prediction, which integrates gas concentration prediction and fault diagnosis models. First, based on the historical monitoring data, each characteristic gas sequence is subjected to one optimal variational mode decomposition (OVMD) and one complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The decomposed sub-sequences are input into a bi-directional long short-term memory network (Bi-LSTM) optimized by the sparrow search algorithm (SSA) for prediction, and the predicted value of each sub-sequence was then superimposed to be the predicted value of the characteristic gas. We input the predicted values of each gas into the improved sparrow search algorithm-optimized support vector machine (ISSA-SVM) model, which can output the final fault type. After the construction of the combined model of state prediction is completed, this paper uses three actual cases to test the model, and at the same time, it uses the traditional fault diagnosis methods to judge the cases and compare these methods with the model in this paper. The results show that the combined model of transformer state prediction constructed in this paper is able to predict the type of transformer faults in the future effectively, and it is of great significance for the practical application of transformer fault type diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qingmoheng发布了新的文献求助200
刚刚
小张发布了新的文献求助10
刚刚
虚心的乐安完成签到,获得积分10
刚刚
1秒前
无语的煜祺应助阿峰采纳,获得10
1秒前
1秒前
1秒前
彭于晏应助Kyrie采纳,获得10
1秒前
cc完成签到,获得积分10
2秒前
关亚娜完成签到,获得积分10
3秒前
所所应助lili采纳,获得10
3秒前
Tess发布了新的文献求助10
3秒前
weiwei完成签到,获得积分10
4秒前
NexusExplorer应助Fuffu采纳,获得10
4秒前
沁秋完成签到,获得积分10
4秒前
4秒前
5秒前
隐形曼青应助壮观的人龙采纳,获得10
5秒前
慕青应助谦让靖儿采纳,获得10
6秒前
嘟嘟嘟发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
FashionBoy应助yyy采纳,获得10
7秒前
李健应助含糊的茹妖采纳,获得10
7秒前
7秒前
宋礼发布了新的文献求助10
8秒前
8秒前
8秒前
子非余发布了新的文献求助10
8秒前
Percy发布了新的文献求助10
8秒前
Orange应助wuzhizzz采纳,获得10
9秒前
英姑应助Tess采纳,获得10
9秒前
可爱的函函应助生物狗采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
012完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853