Research on Transformer Condition Prediction Based on Gas Prediction and Fault Diagnosis

变压器 可靠性工程 断层(地质) 计算机科学 工程类 电气工程 地质学 电压 地震学
作者
Can Ding,Wenhui Chen,Donghai Yu,Yongcan Yan
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (16): 4082-4082 被引量:1
标识
DOI:10.3390/en17164082
摘要

As an indispensable part of the power system, transformers need to be continuously monitored to detect anomalies or faults in a timely manner to avoid serious damage to the power grid and society. This article proposes a combined model for transformer state prediction, which integrates gas concentration prediction and fault diagnosis models. First, based on the historical monitoring data, each characteristic gas sequence is subjected to one optimal variational mode decomposition (OVMD) and one complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The decomposed sub-sequences are input into a bi-directional long short-term memory network (Bi-LSTM) optimized by the sparrow search algorithm (SSA) for prediction, and the predicted value of each sub-sequence was then superimposed to be the predicted value of the characteristic gas. We input the predicted values of each gas into the improved sparrow search algorithm-optimized support vector machine (ISSA-SVM) model, which can output the final fault type. After the construction of the combined model of state prediction is completed, this paper uses three actual cases to test the model, and at the same time, it uses the traditional fault diagnosis methods to judge the cases and compare these methods with the model in this paper. The results show that the combined model of transformer state prediction constructed in this paper is able to predict the type of transformer faults in the future effectively, and it is of great significance for the practical application of transformer fault type diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷小鸭子完成签到,获得积分10
刚刚
ff完成签到,获得积分10
刚刚
刚刚
zhaoxuelian发布了新的文献求助10
1秒前
天天快乐应助111采纳,获得10
1秒前
1秒前
2秒前
蜘猪侠zx完成签到,获得积分10
5秒前
冰霜雨露完成签到 ,获得积分10
5秒前
Lucas应助司空豁采纳,获得10
5秒前
13831555290完成签到,获得积分10
7秒前
7秒前
开朗熊猫发布了新的文献求助10
8秒前
上官若男应助Docgrace采纳,获得10
8秒前
烟花应助bobo采纳,获得10
9秒前
9秒前
Ava应助阿南采纳,获得10
9秒前
10秒前
10秒前
xy发布了新的文献求助10
10秒前
JW关闭了JW文献求助
10秒前
lll完成签到,获得积分20
11秒前
勤奋尔冬完成签到 ,获得积分10
11秒前
12秒前
ljyimu发布了新的文献求助10
12秒前
柯一一应助zhaoxuelian采纳,获得10
13秒前
舍予发布了新的文献求助10
14秒前
柯一一应助Rayoo采纳,获得10
14秒前
沛沛发布了新的文献求助10
15秒前
Simlove发布了新的文献求助10
15秒前
思源应助碧蓝丹烟采纳,获得10
15秒前
16秒前
cr发布了新的文献求助10
16秒前
水木应助王大D采纳,获得10
16秒前
对阳光过敏的非洲仔完成签到,获得积分10
16秒前
orixero应助我是张铁柱·采纳,获得10
16秒前
bobo完成签到 ,获得积分10
18秒前
ccy完成签到 ,获得积分10
18秒前
lll发布了新的文献求助10
19秒前
wu8577应助兰天采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956435
求助须知:如何正确求助?哪些是违规求助? 3502556
关于积分的说明 11108554
捐赠科研通 3233240
什么是DOI,文献DOI怎么找? 1787203
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105