Research on Transformer Condition Prediction Based on Gas Prediction and Fault Diagnosis

变压器 可靠性工程 断层(地质) 计算机科学 工程类 电气工程 地质学 电压 地震学
作者
Can Ding,Wenhui Chen,Donghai Yu,Yongcan Yan
出处
期刊:Energies [MDPI AG]
卷期号:17 (16): 4082-4082 被引量:2
标识
DOI:10.3390/en17164082
摘要

As an indispensable part of the power system, transformers need to be continuously monitored to detect anomalies or faults in a timely manner to avoid serious damage to the power grid and society. This article proposes a combined model for transformer state prediction, which integrates gas concentration prediction and fault diagnosis models. First, based on the historical monitoring data, each characteristic gas sequence is subjected to one optimal variational mode decomposition (OVMD) and one complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The decomposed sub-sequences are input into a bi-directional long short-term memory network (Bi-LSTM) optimized by the sparrow search algorithm (SSA) for prediction, and the predicted value of each sub-sequence was then superimposed to be the predicted value of the characteristic gas. We input the predicted values of each gas into the improved sparrow search algorithm-optimized support vector machine (ISSA-SVM) model, which can output the final fault type. After the construction of the combined model of state prediction is completed, this paper uses three actual cases to test the model, and at the same time, it uses the traditional fault diagnosis methods to judge the cases and compare these methods with the model in this paper. The results show that the combined model of transformer state prediction constructed in this paper is able to predict the type of transformer faults in the future effectively, and it is of great significance for the practical application of transformer fault type diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Robert完成签到,获得积分10
刚刚
刚刚
朱佳宁发布了新的文献求助10
1秒前
xxfsx应助f1sh采纳,获得10
1秒前
超级幻梅发布了新的文献求助10
2秒前
Daisy完成签到,获得积分10
2秒前
hx发布了新的文献求助10
3秒前
卞家友发布了新的文献求助10
3秒前
魔幻白柏发布了新的文献求助10
3秒前
Goyounjung完成签到,获得积分10
4秒前
远坂时辰发布了新的文献求助10
4秒前
5秒前
烟花应助等待的龙猫采纳,获得80
7秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
mly发布了新的文献求助10
11秒前
11秒前
AAA完成签到,获得积分10
11秒前
12秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
Zx_1993应助科研通管家采纳,获得10
14秒前
一叶知秋应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
小青椒应助科研通管家采纳,获得50
15秒前
一叶知秋应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
Jasper应助风趣夜山采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得30
15秒前
慕青应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
一叶知秋应助科研通管家采纳,获得10
15秒前
Zx_1993应助科研通管家采纳,获得10
15秒前
15秒前
nani260完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480697
求助须知:如何正确求助?哪些是违规求助? 4581819
关于积分的说明 14382394
捐赠科研通 4510450
什么是DOI,文献DOI怎么找? 2471803
邀请新用户注册赠送积分活动 1458216
关于科研通互助平台的介绍 1431896