A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective

计算机科学 图形 人工智能 机器视觉 人工神经网络 透视图(图形) 计算机视觉 理论计算机科学
作者
Chaoqi Chen,Yushuang Wu,Qiyuan Dai,Hong-Yu Zhou,Mutian Xu,Sibei Yang,Xiaoguang Han,Yizhou Yu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10297-10318 被引量:36
标识
DOI:10.1109/tpami.2024.3445463
摘要

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (e.g., social network analysis and recommender systems), computer vision (e.g., object detection and point cloud learning), and natural language processing (e.g., relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, i.e., 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美天奇完成签到 ,获得积分10
刚刚
小伙子发布了新的文献求助10
3秒前
wanzi0502完成签到,获得积分20
4秒前
香蕉觅云应助不管啦采纳,获得10
6秒前
研友_ndDGVn完成签到,获得积分10
7秒前
8秒前
wangyue完成签到 ,获得积分10
8秒前
稀松完成签到,获得积分0
8秒前
wang完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
hollow完成签到 ,获得积分10
12秒前
郭勇慧发布了新的文献求助10
13秒前
李雨完成签到,获得积分10
14秒前
16秒前
优雅砖头发布了新的文献求助10
16秒前
xiuxiu完成签到 ,获得积分10
17秒前
17秒前
18秒前
小伙子完成签到,获得积分10
19秒前
郭勇慧完成签到,获得积分10
19秒前
阿桐慕完成签到,获得积分10
19秒前
21秒前
21秒前
21秒前
小二郎应助aibing采纳,获得10
21秒前
20231125完成签到,获得积分10
22秒前
核桃发布了新的文献求助30
22秒前
22秒前
whuhustwit发布了新的文献求助10
23秒前
思源应助嘀嘀菇菇采纳,获得10
24秒前
李雪完成签到,获得积分10
24秒前
田様应助Leon Lai采纳,获得30
25秒前
ppp完成签到,获得积分10
27秒前
zym428完成签到,获得积分10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
xxfsx应助科研通管家采纳,获得10
28秒前
xxfsx应助科研通管家采纳,获得10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456182
求助须知:如何正确求助?哪些是违规求助? 4563144
关于积分的说明 14288403
捐赠科研通 4487549
什么是DOI,文献DOI怎么找? 2457986
邀请新用户注册赠送积分活动 1448364
关于科研通互助平台的介绍 1423929