A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective

计算机科学 图形 人工智能 机器视觉 人工神经网络 透视图(图形) 计算机视觉 理论计算机科学
作者
Chaoqi Chen,Yushuang Wu,Qiyuan Dai,Hong-Yu Zhou,Mutian Xu,Sibei Yang,Xiaoguang Han,Yizhou Yu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-20 被引量:2
标识
DOI:10.1109/tpami.2024.3445463
摘要

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (e.g., social network analysis and recommender systems), computer vision (e.g., object detection and point cloud learning), and natural language processing (e.g., relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, i.e., 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助海茵采纳,获得10
刚刚
渐安发布了新的文献求助10
1秒前
2秒前
4秒前
4秒前
wanci应助vn采纳,获得10
5秒前
5秒前
Hayate应助xy采纳,获得20
6秒前
Ernest奶爸发布了新的文献求助10
6秒前
LL发布了新的文献求助10
7秒前
阿桂完成签到,获得积分10
9秒前
9秒前
獭獭发布了新的文献求助10
9秒前
10秒前
轻松完成签到,获得积分10
12秒前
不朽阳神完成签到,获得积分10
12秒前
12秒前
14秒前
谷雨完成签到,获得积分20
15秒前
夕荀发布了新的文献求助10
16秒前
阿桂发布了新的文献求助10
17秒前
港岛妹妹应助cyh413134采纳,获得20
17秒前
tx完成签到,获得积分10
17秒前
17秒前
18秒前
安生完成签到,获得积分10
20秒前
Ernest奶爸完成签到,获得积分10
21秒前
pluto应助贷款做科研采纳,获得10
21秒前
李爱国应助夕荀采纳,获得10
23秒前
23秒前
天才小能喵完成签到 ,获得积分0
24秒前
25秒前
大个应助adeno采纳,获得10
26秒前
27秒前
木木发布了新的文献求助20
27秒前
29秒前
vn发布了新的文献求助10
29秒前
30秒前
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242966
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246239
捐赠科研通 2555661
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625625